• linkedu视频
  • 平面设计
  • 电脑入门
  • 操作系统
  • 办公应用
  • 电脑硬件
  • 动画设计
  • 3D设计
  • 网页设计
  • CAD设计
  • 影音处理
  • 数据库
  • 程序设计
  • 认证考试
  • 信息管理
  • 信息安全
菜单
linkedu.com
  • 网页制作
  • 数据库
  • 程序设计
  • 操作系统
  • CMS教程
  • 游戏攻略
  • 脚本语言
  • 平面设计
  • 软件教程
  • 网络安全
  • 电脑知识
  • 服务器
  • 视频教程
  • MsSql
  • Mysql
  • oracle
  • MariaDB
  • DB2
  • SQLite
  • PostgreSQL
  • MongoDB
  • Redis
  • Access
  • 数据库其它
  • sybase
  • HBase
您的位置:首页 > 数据库 >Mysql > MySQL索引背后的之使用策略及优化(高性能索引策略)

MySQL索引背后的之使用策略及优化(高性能索引策略)

作者:匿名 字体:[增加 减小] 来源:互联网 时间:2018-12-05

匿名通过本文主要向大家介绍了MySQL索引等相关知识,希望本文的分享对您有所帮助

MySQL的优化主要分为结构优化(Scheme optimization)和查询优化(Query optimization)。本章讨论的高性能索引策略主要属于结构优化范畴

本章的内容完全基于上文的理论基础,实际上一旦理解了索引背后的机制,那么选择高性能的策略就变成了纯粹的推理,并且可以理解这些策略背后的逻辑。

  示例数据库

  为了讨论索引策略,需要一个数据量不算小的数据库作为示例。本文选用MySQL官方文档中提供的示例数据库之一:employees。这个数据库关系复杂度适中,且数据量较大。下图是这个数据库的E-R关系图(引用自MySQL官方手册):

  

  图12

  MySQL官方文档中关于此数据库的页面为http://dev.mysql.com/doc/employee/en/employee.html。里面详细介绍了此数据库,并提供了下载地址和导入方法,如果有兴趣导入此数据库到自己的MySQL可以参考文中内容。

  最左前缀原理与相关优化

  高效使用索引的首要条件是知道什么样的查询会使用到索引,这个问题和B+Tree中的“最左前缀原理”有关,下面通过例子说明最左前缀原理。

  这里先说一下联合索引的概念。在上文中,我们都是假设索引只引用了单个的列,实际上,MySQL中的索引可以以一定顺序引用多个列,这种索引叫做联合索引,一般的,一个联合索引是一个有序元组,其中各个元素均为数据表的一列,实际上要严格定义索引需要用到关系代数,但是这里我不想讨论太多关系代数的话题,因为那样会显得很枯燥,所以这里就不再做严格定义。另外,单列索引可以看成联合索引元素数为1的特例。

  以employees.titles表为例,下面先查看其上都有哪些索引:

  从结果中可以到titles表的主索引为,还有一个辅助索引。为了避免多个索引使事情变复杂(MySQL的SQL优化器在多索引时行为比较复杂),这里我们将辅助索引drop掉:

  这样就可以专心分析索引PRIMARY的行为了。

  情况一:全列匹配。

  很明显,当按照索引中所有列进行精确匹配(这里精确匹配指“=”或“IN”匹配)时,索引可以被用到。这里有一点需要注意,理论上索引对顺序是敏感的,但 是由于MySQL的查询优化器会自动调整where子句的条件顺序以使用适合的索引,例如我们将where中的条件顺序颠倒:

  效果是一样的。

  情况二:最左前缀匹配。

  当查询条件精确匹配索引的左边连续一个或几个列时,如或,所以可以被用到,但是只能用到一部分,即条件所组成的最左前缀。上面的查询从分析结果看用到了PRIMARY索引,但是 key_len为4,说明只用到了索引的第一列前缀。

  情况三:查询条件用到了索引中列的精确匹配,但是中间某个条件未提供。

  此时索引使用情况和情况二相同,因为title未提供,所以查询只用到了索引的第一列,而后面的from_date虽然也在索引中,但是由于 title不存在而无法和左前缀连接,因此需要对结果进行扫描过滤from_date(这里由于emp_no唯一,所以不存在扫描)。如果想让 from_date也使用索引而不是where过滤,可以增加一个辅助索引,此时上面的查询会使用这个索引。除此之外,还可以使用一种称之为“隔离列”的优化方法,将emp_no与from_date 之间的“坑”填上。

  首先我们看下title一共有几种不同的值:

  只有7种。在这种成为“坑”的列值比较少的情况下,可以考虑用“IN”来填补这个“坑”从而形成最左前缀:

  这次key_len为59,说明索引被用全了,但是从type和rows看出IN实际上执行了一个range查询,这里检查了7个key。看下两种查询的性能比较:

  “填坑”后性能提升了一点。如果经过emp_no筛选后余下很多数据,则后者性能优势会更加明显。当然,如果title的值很多,用填坑就不合适了,必须建立辅助索引。

  情况四:查询条件没有指定索引第一列。

  由于不是最左前缀,索引这样的查询显然用不到索引。

  情况五:匹配某列的前缀字符串。

  此时可以用到索引,但是如果通配符不是只出现在末尾,则无法使用索引。

  情况六:范围查询。

  范围列可以用到索引(必须是最左前缀),但是范围列后面的列无法用到索引。同时,索引最多用于一个范围列,因此如果查询条件中有两个范围列则无法全用到索引。

  可以看到索引对第二个范围索引无能为力。这里特别要说明MySQL一个有意思的地方,那就是仅用explain可能无法区分范围索引和多值匹配,因为在type中这两者都显示为range。同时,用了“between”并不意味着就是范围查询,例如下面的查询:

  看起来是用了两个范围查询,但作用于emp_no上的“BETWEEN”实际上相当于“IN”,也就是说emp_no实际是多值精确匹配。可以看到这个查询用到了索引全部三个列。因此在MySQL中要谨慎地区分多值匹配和范围匹配,否则会对MySQL的行为产生困惑。

  情况七:查询条件中含有函数或表达式。

  很不幸,如果查询条件中含有函数或表达式,则MySQL不会为这列使用索引(虽然某些在数学意义上可以使用)。例如:

  虽然这个查询和情况五中功能相同,但是由于使用了函数left,则无法为title列应用索引,而情况五中用LIKE则可以。再如:

  显然这个查询等价于查询emp_no为10001的函数,但是由于查询条件是一个表达式,MySQL无法为其使用索引。看来MySQL还没有智能到自动优化常量表达式的程度,因此在写查询语句时尽量避免表达式出现在查询中,而是先手工私下代数运算,转换为无表达式的查询语句。

  索引选择性与前缀索引

  既然索引可以加快查询速度,那么是不是只要是查询语句需要,就建上索引?答案是否定的。因为索引虽然加快了查询速度,但索引也是有代价的:索引文件本身要消耗存储空间,同时索引会加重插入、删除和修改记录时的负担,另外,MySQL在运行时也要消耗资源维护索引,因此索引并不是越多越好。一般两种情况下不建议建索引。

  第一种情况是表记录比较少,例如一两千条甚至只有几百条记录的表,没必要建索引,让查询做全表扫描就好了。至于多少条记录才算多,这个个人有个人的看法,我个人的经验是以2000作为分界线,记录数不超过 2000可以考虑不建索引,超过2000条可以酌情考虑索引。

  另一种不建议建索引的情况是索引的选择性较低。所谓索引的选择性(Selectivity),是指不重复的索引值(也叫基数,Cardinality)与表记录数(#T)的比值:

  Index Selectivity = Cardinality / #T

  显然选择性的取值范围为(0, 1],选择性越高的索引价值越大,这是由B+Tree的性质决定的。例如,上文用到的employees.titles表,如果title字段经常被单独查询,是否需要建索引,我们看一下它的选择性:

  title的选择性不足0.0001(精确值为0.00001579),所以实在没有什么必要为其单独建索引。

  有一种与索引选择性有关的索引优化策略叫做前缀索引,就是用列的前缀代替整个列作为索引key,当前缀长度合适时,可以做到既使得前缀索引的选择性 接近全列索引,同时因为索引key变短而减少了索引文件的大小和维护开销。下面以employees.employees表为例介绍前缀索引的选择和使 用。

  从图12可以看到employees表只有一个索引,那么如果我们想按名字搜索一个人,就只能全表扫描了:

  如果频繁按名字搜索员工,这样显然效率很低,因此我们可以考虑建索引。有两种选择,建或,看下两个索引的选择性:

显然选择性太低,选择性很好,但是first_name和last_name加起来长度为30,有没有兼顾长度和选择性的办法?可以考虑用 first_name和last_name的前几个字符建立索引,例如,看看其选择性:

  选择性还不错,但离0.9313还是有点距离,那么把last_name前缀加到4:

  这时选择性已经很理想了,而这个索引的长度只有18,比短了接近一半,我们把这个前缀索引建上:

  此时再执行一遍按名字查询,比较分析一下与建索引前的结果:

  性能的提升是显著的,查询速度提高了120多倍。

  前缀索引兼顾索引大小和查询速度,但是其缺点是不能用于ORDER BY和GROUP BY操作,也不能用于Covering index(即当索引本身包含查询所需全部数据时,不再访问数据文件本身)。

  InnoDB的主键选择与插入优化

  在使用InnoDB存储引擎时,如果没有特别的需要,请永远使用一个与业务无关的自增字段作为主键。

  经常看到有帖子或博客讨论主键选择问题,有人建议使用业务无关的自增主键,有人觉得没有必要,完全可以使用如学号或身份证号这种唯一字段作为主键。不论支持哪种论点,大多

分享到:QQ空间新浪微博腾讯微博微信百度贴吧QQ好友复制网址打印

您可能想查找下面的文章:

相关文章

  • 2017-05-11Mysql表的七种类型详细介绍
  • 2018-12-05mysql密码忘记的解决方法(图)
  • 2018-12-05MySQL存储过程-->通过游标遍历和异常处理迁移数据到历史表
  • 2018-12-05分享SQLCipher数据库如何加解密
  • 2018-12-05MySQL升级的最佳方法实例分享
  • 2018-12-05Mysql存储引擎之Innodb存储引擎的介绍
  • 2017-05-11mysqld-nt: Out of memory (Needed 1677720 bytes)解决方法
  • 2018-12-05比较全面的MySQL优化参考
  • 2018-12-05MySql如何取消密码强度验证
  • 2017-05-11mysql仿oracle的decode效果查询

文章分类

  • MsSql
  • Mysql
  • oracle
  • MariaDB
  • DB2
  • SQLite
  • PostgreSQL
  • MongoDB
  • Redis
  • Access
  • 数据库其它
  • sybase
  • HBase

最近更新的内容

    • MySQL 百万级分页优化(Mysql千万级快速分页)
    • MySQL创建用户与授权方法
    • Mysql的limit用法与几种分页形式
    • sql 数据库还原图文教程
    • 关于mysql_result()的10篇文章推荐
    • MySQL数据库InnoDB引擎主从复制同步经验总结
    • 浅谈sql数据库去重
    • Oracle的默认用户密码
    • pt-query-digest(percona toolkit)小解
    • mysql 读写分离(基础篇)

关于我们 - 联系我们 - 免责声明 - 网站地图

©2020-2025 All Rights Reserved. linkedu.com 版权所有