• linkedu视频
  • 平面设计
  • 电脑入门
  • 操作系统
  • 办公应用
  • 电脑硬件
  • 动画设计
  • 3D设计
  • 网页设计
  • CAD设计
  • 影音处理
  • 数据库
  • 程序设计
  • 认证考试
  • 信息管理
  • 信息安全
菜单
linkedu.com
  • 网页制作
  • 数据库
  • 程序设计
  • 操作系统
  • CMS教程
  • 游戏攻略
  • 脚本语言
  • 平面设计
  • 软件教程
  • 网络安全
  • 电脑知识
  • 服务器
  • 视频教程
  • bios
  • 系统安装
  • 系统进程
  • Windows
  • LINUX
  • RedHat/Centos
  • Ubuntu/Debian
  • Fedora
  • Solaris
  • 麒麟系统
  • 红旗Linux
  • 苹果MAC
  • 注册表
  • 其它系统
您的位置:首页 > 操作系统 >LINUX > 在Linux平台下分析死锁问题的方法

在Linux平台下分析死锁问题的方法

作者:佚名 字体:[增加 减小] 来源:互联网 时间:2017-05-12

佚名 通过本文向大家介绍了linux死锁,死锁问题,如何解决死锁问题,车辆行驶死锁问题,怎么解决死锁问题等相关知识,希望对您有所帮助,也希望大家多多支持linkedu.com

死锁 (deallocks): 是指两个或两个以上的进程(线程)在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程(线程)称为死锁进程(线程)。 由于资源占用是互斥的,当某个进程提出申请资源后,使得有关进程(线程)在无外力协助下,永远分配不到必需的资源而无法继续运行,这就产生了一种特殊现象死锁。

一种交叉持锁死锁的情形,此时执行程序中两个或多个线程发生永久堵塞(等待),每个线程都在等待被其它线程占用并堵塞了的资源。例如,如果线程 1 锁住了记录 A 并等待记录 B,而线程 2 锁住了记录 B 并等待记录 A,这样两个线程就发生了死锁现象。在计算机系统中 , 如果系统的资源分配策略不当,更常见的可能是程序员写的程序有错误等,则会导致进程因竞争资源不当而产生死锁的现象。

产生死锁的四个必要条件

(1) 互斥条件:一个资源每次只能被一个进程(线程)使用。

(2) 请求与保持条件:一个进程(线程)因请求资源而阻塞时,对已获得的资源保持不放。

(3) 不剥夺条件 : 此进程(线程)已获得的资源,在末使用完之前,不能强行剥夺。

(4) 循环等待条件 : 多个进程(线程)之间形成一种头尾相接的循环等待资源关系。

图 1. 交叉持锁的死锁示意图:

注释:在执行 func2 和 func4 之后,子线程 1 获得了锁 A,正试图获得锁 B,但是子线程 2 此时获得了锁 B,正试图获得锁 A,所以子线程 1 和子线程 2 将没有办法得到锁 A 和锁 B,因为它们各自被对方占有,永远不会释放,所以发生了死锁的现象。

使用 pstack 和 gdb 工具对死锁程序进行分析

pstack 在 Linux 平台上的简单介绍

pstack 是 Linux(比如 Red Hat Linux 系统、Ubuntu Linux 系统等)下一个很有用的工具,它的功能是打印输出此进程的堆栈信息。可以输出所有线程的调用关系栈。

gdb 在 Linux 平台上的简单介绍

GDB 是 GNU 开源组织发布的一个强大的 UNIX 下的程序调试工具。Linux 系统中包含了 GNU 调试程序 gdb,它是一个用来调试 C 和 C++ 程序的调试器。可以使程序开发者在程序运行时观察程序的内部结构和内存的使用情况 .

gdb 所提供的一些主要功能如下所示:

1 运行程序,设置能影响程序运行的参数和环境 ;

2 控制程序在指定的条件下停止运行;

3 当程序停止时,可以检查程序的状态;

4 当程序 crash 时,可以检查 core 文件;

5 可以修改程序的错误,并重新运行程序;

6 可以动态监视程序中变量的值;

7 可以单步执行代码,观察程序的运行状态。

gdb 程序调试的对象是可执行文件或者进程,而不是程序的源代码文件。然而,并不是所有的可执行文件都可以用 gdb 调试。如果要让产生的可执行文件可以用来调试,需在执行 g++(gcc)指令编译程序时,加上 -g 参数,指定程序在编译时包含调试信息。调试信息包含程序里的每个变量的类型和在可执行文件里的地址映射以及源代码的行号。gdb 利用这些信息使源代码和机器码相关联。gdb 的基本命令较多,不做详细介绍,大家如果需要进一步了解,请参见 gdb 手册。

清单 1. 测试程序

#include  
 #include  
 #include  

 pthread_mutex_t mutex1 = PTHREAD_MUTEX_INITIALIZER; 
 pthread_mutex_t mutex2 = PTHREAD_MUTEX_INITIALIZER; 
 pthread_mutex_t mutex3 = PTHREAD_MUTEX_INITIALIZER; 
 pthread_mutex_t mutex4 = PTHREAD_MUTEX_INITIALIZER; 

 static int sequence1 = 0; 
 static int sequence2 = 0; 

 int func1() 
 { 
    pthread_mutex_lock(&mutex1); 
    ++sequence1; 
    sleep(1); 
    pthread_mutex_lock(&mutex2); 
    ++sequence2; 
    pthread_mutex_unlock(&mutex2); 
    pthread_mutex_unlock(&mutex1); 

    return sequence1; 
 } 

 int func2() 
 { 
    pthread_mutex_lock(&mutex2); 
    ++sequence2; 
    sleep(1); 
    pthread_mutex_lock(&mutex1); 
    ++sequence1; 
    pthread_mutex_unlock(&mutex1); 
    pthread_mutex_unlock(&mutex2); 

    return sequence2; 
 } 

 void* thread1(void* arg) 
 { 
    while (1) 
    { 
        int iRetValue = func1(); 

        if (iRetValue == 100000) 
        { 
            pthread_exit(NULL); 
        } 
    } 
 } 

 void* thread2(void* arg) 
 { 
    while (1) 
    { 
        int iRetValue = func2(); 

        if (iRetValue == 100000) 
        { 
            pthread_exit(NULL); 
        } 
    } 
 } 

 void* thread3(void* arg) 
 { 
    while (1) 
    { 
        sleep(1); 
        char szBuf[128]; 
        memset(szBuf, 0, sizeof(szBuf)); 
        strcpy(szBuf, "thread3"); 
    } 
 } 

 void* thread4(void* arg) 
 { 
    while (1) 
    { 
        sleep(1); 
        char szBuf[128]; 
        memset(szBuf, 0, sizeof(szBuf)); 
        strcpy(szBuf, "thread3"); 
    } 
 } 

 int main() 
 { 
    pthread_t tid[4]; 
    if (pthread_create(&tid[0], NULL, &thread1, NULL) != 0) 
    { 
        _exit(1); 
    } 
    if (pthread_create(&tid[1], NULL, &thread2, NULL) != 0) 
    { 
        _exit(1); 
    } 
    if (pthread_create(&tid[2], NULL, &thread3, NULL) != 0) 
    { 
        _exit(1); 
    } 
    if (pthread_create(&tid[3], NULL, &thread4, NULL) != 0) 
    { 
        _exit(1); 
    } 

    sleep(5); 
    //pthread_cancel(tid[0]); 

    pthread_join(tid[0], NULL); 
    pthread_join(tid[1], NULL); 
    pthread_join(tid[2], NULL); 
    pthread_join(tid[3], NULL); 

    pthread_mutex_destroy(&mutex1); 
    pthread_mutex_destroy(&mutex2); 
    pthread_mutex_destroy(&mutex3); 
    pthread_mutex_destroy(&mutex4); 

    return 0; 
 } 
</div>

清单 2. 编译测试程序

 [dyu@xilinuxbldsrv purify]$ g++ -g lock.cpp -o lock -lpthread 
</div>

清单 3. 查找测试程序的进程号

 [dyu@xilinuxbldsrv purify]$ ps -ef|grep lock 
 dyu       6721  5751  0 15:21 pts/3    00:00:00 ./lock 
</div>

清单 4. 对死锁进程第一次执行 pstack(pstack –进程号)的输出结果

 [dyu@xilinuxbldsrv purify]$ pstack 6721 
 Thread 5 (Thread 0x41e37940 (LWP 6722)): 
 #0  0x0000003d1a80d4c4 in __lll_lock_wait () from /lib64/libpthread.so.0 
 #1  0x0000003d1a808e1a in _L_lock_1034 () from /lib64/libpthread.so.0 
 #2  0x0000003d1a808cdc in pthread_mutex_lock () from /lib64/libpthread.so.0 
 #3  0x0000000000400a9b in func1() () 
 #4  0x0000000000400ad7 in thread1(void*) () 
 #5  0x0000003d1a80673d in start_thread () from /lib64/libpthread.so.0 
 #6  0x0000003d19cd40cd in clone () from /lib64/libc.so.6 
 Thread 4 (Thread 0x42838940 (LWP 6723)): 
 #0  0x0000003d1a80d4c4 in __lll_lock_wait () from /lib64/libpthread.so.0 
 #1  0x0000003d1a808e1a in _L_lock_1034 () from /lib64/libpthread.so.0 
 #2  0x0000003d1a808cdc in pthread_mutex_lock () from /lib64/libpthread.so.0 
 #3  0x0000000000400a17 in func2() () 
 #4  0x0000000000400a53 in thread2(void*) () 
 #5  0x0000003d1a80673d in start_thread () from /lib64/libpthread.so.0 
 #6  0x0000003d19cd40cd in clone () from /lib64/libc.so.6 
 Thread 3 (Thread 0x43239940 (LWP 6724)): 
 #0  0x0000003d19c9a541 in nanosleep () from /lib64/libc.so.6 
 #1  0x0000003d19c9a364 in sleep () from /lib64/libc.so.6 
 #2  0x00000000004009bc in thread3(void*) () 
 #3  0x0000003d1a80673d in start_thread () from /lib64/libpthread.so.0 
 #4  0x0000003d19cd40cd in clone () from /lib64/libc.so.6 
 Thread 2 (Thread 0x43c3a940 (LWP 6725)): 
 #0  0x0000003d19c9a541 in nanosleep () from /lib64/libc.so.6 
 #1  0x0000003d19c9a364 in sleep () from /lib64/libc.so.6 
 #2  0x0000000000400976 in thread4(void*) () 
 #3  0x0000003d1a80673d in start_thread () from /lib64/libpthread.so.0 
 #4  0x0000003d19cd40cd in clone () from /lib64/libc.so.6 
 Thread 1 (Thread 0x2b984ecabd90 (LWP 6721)): 
 #0  0x0000003d1a807b35 in pthread_
  


 
分享到:QQ空间新浪微博腾讯微博微信百度贴吧QQ好友复制网址打印

您可能想查找下面的文章:

  • 在Linux平台下分析死锁问题的方法
  • 在Linux上分析死锁问题的简单方法

相关文章

  • 2017-05-12Linux内核与根文件系统的关系详解
  • 2017-05-12linux下控制帐户过期的多种方法讲解
  • 2017-05-12快速浏览Linux下基本的用户和用户组管理命令
  • 2017-05-12Linux系统下OpenSSH的安装及基本配置文件详解
  • 2017-05-12Linux系统下将txt转换为mobi格式电子书的方法
  • 2017-05-12Linux系统下强大的lsof命令使用宝典
  • 2017-05-12深入解析Linux内核及其相关架构的依赖关系
  • 2017-05-12Linux去除fstab文件只读属性的方法
  • 2017-05-12Linux系统下CVS的账号控制操作简介
  • 2017-05-12Linux下获取公网IP地址的方法

文章分类

  • bios
  • 系统安装
  • 系统进程
  • Windows
  • LINUX
  • RedHat/Centos
  • Ubuntu/Debian
  • Fedora
  • Solaris
  • 麒麟系统
  • 红旗Linux
  • 苹果MAC
  • 注册表
  • 其它系统

最近更新的内容

    • Linux下partprobe命令的使用详解
    • Linux系统下无法访问mysql解决方法
    • Linux 系统内核的调试详解
    • Linux系统下安装ccze小工具美化系统日志
    • Linux内核环境下如何申请大块内存?
    • Linux系统中重复执行命令的方法小结
    • Linux中禁止root用户SSH登录及修改SSH端口的方法
    • Java开发时经常使用的相关Linux命令整理
    • lxde桌面美化怎么样?选择LXDE作为Linux桌面的八大理由
    • 容易被误读的iostat(Linux系统)

关于我们 - 联系我们 - 免责声明 - 网站地图

©2020-2025 All Rights Reserved. linkedu.com 版权所有