• linkedu视频
  • 平面设计
  • 电脑入门
  • 操作系统
  • 办公应用
  • 电脑硬件
  • 动画设计
  • 3D设计
  • 网页设计
  • CAD设计
  • 影音处理
  • 数据库
  • 程序设计
  • 认证考试
  • 信息管理
  • 信息安全
菜单
linkedu.com
  • 网页制作
  • 数据库
  • 程序设计
  • 操作系统
  • CMS教程
  • 游戏攻略
  • 脚本语言
  • 平面设计
  • 软件教程
  • 网络安全
  • 电脑知识
  • 服务器
  • 视频教程
  • MsSql
  • Mysql
  • oracle
  • MariaDB
  • DB2
  • SQLite
  • PostgreSQL
  • MongoDB
  • Redis
  • Access
  • 数据库其它
  • sybase
  • HBase
您的位置:首页 > 数据库 >Redis > Redis数据库中实现分布式锁的方法

Redis数据库中实现分布式锁的方法

作者: 字体:[增加 减小] 来源:互联网 时间:2017-05-11

通过本文主要向大家介绍了redis是数据库吗,redis数据库下载,redis数据库使用,redis数据库教程,redis数据库命令等相关知识,希望本文的分享对您有所帮助

分布式锁是一个在很多环境中非常有用的原语,它是不同进程互斥操作共享资源的唯一方法。有很多的开发库和博客描述如何使用Redis实现DLM(Distributed Lock Manager),但是每个开发库使用不同的方式,而且相比更复杂的设计与实现,很多库使用一些简单低可靠的方式来实现。

这篇文章尝试提供更标准的算法来使用Redis实现分布式锁。我们提出一种算法,叫做Relock,它实现了我们认为比vanilla单一实例方式更安全的DLM(分布式锁管理)。我们希望社区分析它并提供反馈,以做为更加复杂或替代设计的一个实现。

实现

在说具体算法之前,下面有一些具体的实现可供参考.

  •    Redlock-rb (Ruby实现).
  •     Redlock-php (PHP 实现).
  •     Redsync.go (Go 实现).
  •     Redisson (Java 实现).

安全和活跃性保证

从有效分布式锁的最小保证粒度来说,我们的模型里面只用了3个属性,具体如下:

1. 属性安全: 互斥行.在任何时候,只有一个客户端可以获得锁.

2. 活跃属性A: 死锁自由. 即使一个客户端已经拥用了已损坏或已被分割资源的锁,但它也有可能请求其他的锁.

3. 活跃属性B:容错. 只要大部分Redis节点可用, 客户端就可以获得和释放锁.

为何基于容错的实现还不够

要理解我们所做的改进,就要先分析下当前基于Redis的分布式锁的做法。

使用Redis锁住资源的最简单的方法是创建一对key-value值。利用Redis的超时机制,key被创建为有一定的生存期,因此它最终会被释放。而当客户端想要释放时,直接删除key就行了。

一般来说这工作得很好,但有个问题: 这是系统的一个单点。如果Redis主节点挂了呢?当然,我们可以加个子节点,主节点出问题时可以切换过来。不过很可惜,这种方案不可行,因为Redis的主-从复制是异步的,我们无法用其实现互斥的安全特性。

这明显是该模型的一种竞态条件:

  •     客户端A在主节点获得了一个锁。
  •     主节点挂了,而到从节点的写同步还没完成。
  •     从节点被提升为主节点。
  •     客户端B获得和A相同的锁。注意,锁安全性被破坏了!

有时候,在某些情况下这反而工作得很好,例如在出错时,多个客户端可以获得同一个锁。如果这正好是你想要的,那就可以使用主-从复制的方案。否则,我们建议使用这篇文章中描述的方法。

单实例的正确实现方案

在尝试解决上文描述的单实例方案的缺陷之前,先让我们确保针对这种简单的情况,怎么做才是无误的,因为这种方案对某些程序而言也是可以接受的,而且这也是我们即将描述的分布式方案的基础。

为了获取锁,方法是这样的:
  SET resource_name my_random_value NX PX 30000</div>

这条指令将设置key的值,仅当其不存在时生效(NX选项), 且设置其生存期为30000毫秒(PX选项)。和key关联的value值是"my_random_value"。这个值在所有客户端和所有加锁请求中是必须是唯一的。


使用随机值主要是为了能够安全地释放锁,这要同时结合这么个处理逻辑:删除key值当且仅当其已存在并且其value值是我们所期待的。看看以下lua代码:
  if redis.call("get",KEYS[1]) == ARGV[1] then
    return redis.call("del",KEYS[1])
else
    return 0
end</div>

这么做很重要,可以避免误删其他客户端创建的锁。例如某个客户端获得了一个锁,但它的处理时长超过了锁的有效时长,之后它删除了这个锁,而此时这个锁可能又被其他客户端给获得了。仅仅做删除是不够安全的,很可能会把其他客户端的锁给删了。结合上面的代码,每个锁都有个唯一的随机值,因此仅当这个值依旧是客户端所设置的值时,才会去删除它。


那么应该怎样生成这个随机值呢?我们使用的是从/dev/urandom读取的20个字节,但你也可以找个更简单的方法,只要能满足任务就行。例如,可以使用/dev/urandom初始化RC4算法,然后用其产生随机数流。更简单的方法是组合unix时间戳和客户端ID, 这并不安全,但对很多环境而言也够用了。

我们所说的key的时间,是指”锁的有效时长“. 它代表两种情况,一种是指锁的自动释放时长,另一种是指在另一个客户端获取锁之前某个客户端占用这个锁的时长,这被限制在从锁获取后开始的一段时间窗口内。

现在我们已经有好的办法获取和释放锁了。在单实例非分布式系统中,只要保证节点没挂掉,这个方法就是安全的。那么让我们把这个概念扩展到分布式的系统中吧,那里可没有这种保证。

Redlock 算法

在此算法的分布式版本中,我们假设有N个Redis主节点。这些节点是相互独立的,因此我们不使用复制或其他隐式同步机制。我们已经描述过在单实例情况下如何安全地获取锁。我们也指出此算法将使用这种方法从单实例获取和释放锁。在以下示例中,我们设置N=5(这是个比较适中的值),这样我们需要在不同物理机或虚拟机上运行5个Redis主节点,以确保它们的出错是尽可能独立的。

为了获取锁,客户端执行以下操作:

  •     获取当前时间,以毫秒为单位。
  •     以串行的方式尝试从所有的N个实例中获取锁,使用的是相同的key值和相同的随机value值。在从每个实例获取锁时,客户端会设置一个连接超时,其时长相比锁的自动释放时间要短得多。例如,若锁的自动释放时间是10秒,那么连接超时大概设在5到50毫秒之间。这可以避免当Redis节点挂掉时,会长时间堵住客户端:如果某个节点没及时响应,就应该尽快转到下个节点。
  •     客户端计算获取所有锁耗费的时长,方法是使用当前时间减去步骤1中的时间戳。当且仅当客户端能从多数节点(至少3个)中获得锁,并且耗费的时长小于锁的有效期时,可认为锁已经获得了。
  •     如果锁获得了,它的最终有效时长将重新计算为其原时长减去步骤3中获取锁耗费的时长。
  •     如果锁获取失败了(要么是没有锁住N/2+1个节点,要么是锁的最终有效时长为负数),客户端会对所有实例进行解锁操作(即使对那些没有加锁成功的实例也一样)。


算法是异步的?

算法依赖于这样一个假定,它在处理的时候不是(基于)同步时钟的,每个处理中仍然使用的是本地的时间,它只是大致地以同样地速率运行,这样它就会有一个小的错误,与之相比会有一个小的自动开合的时钟时间。这个假设很像真正世界的电脑:每一台电脑有一个本地时钟,通常我们使用不同的电脑会有一个很小的时钟差。

基于这个观点,我们需要更好地指明我们共同的互斥法则:这是保证客户端能长时间保持状态锁定,其将会终止它们在有效时间内的工作(在步骤3中获得),减去一些时间(在处理时时间差时减去了一些毫秒用来补偿)。

想要了解关于系统需要一个范围的时间差的内容可以获取更多的信息,这篇论文是很好的参考: Leases: an efficient fault-tolerant mechanism for distributed file cache consistency.

失败时重试

当客户端无法获取锁时,它应该在一个随机延迟后重试,从而避免多个客户端同时试图获取锁,相对应同一的同时请求(这可能会导致崩溃,没人会胜出)。同样的,客户端在大多数场合下尝试获取锁的速度越快,崩溃的窗口就越少(重试的需要也越少),所以实际情况下客户端应尝试采用复用方式发送SET命令到多个实例。

强调客户在获取主锁失败是值得的,释放(或部分)以尽快获得锁,这样没有必要为获取锁锁而去等待键到期(但是如果网络分区发生变化时客户端不能与Redis通信的情况下,需要显性提示和等待超时)。

释放锁

释放锁是简单的,只需要释放所有实例的锁即可,尽管客户端认为有能力成功锁住一个给出的实例。

安全参数

要问一个算法是安全的么?那么可以尝试着去理解在不同的情景下发生了什么。我们以假设客户端在大多数情况下都能获得锁来开始,所有的实例都包含相同生存周期的键。由于键是在不同的时间设定的,所以键也将在不同的时间超时。然而,如果第一个节点最迟在t1时刻建立(即样品接触的第一服务器之前),上一个键最迟在T2时刻建立(从上一个服务器获得回复的时间)。可以确定的是第一个键在超时之前将生存至少MIN_VALIDITY=TTL-(T2-T1)-CLOCK_DRIFT。所有其他的钥匙将到期后,钥匙将至少在这一次同时设置。

在过半的键

分享到:QQ空间新浪微博腾讯微博微信百度贴吧QQ好友复制网址打印

您可能想查找下面的文章:

  • 在Redis数据库中实现分布式速率限制的方法
  • Redis数据库中实现分布式锁的方法
  • Redis数据库的应用场景介绍
  • 分割超大Redis数据库例子
  • 超强、超详细Redis数据库入门教程
  • Redis数据库的安装配置方法

相关文章

  • 2017-05-11CentOS Linux系统下安装Redis过程和配置参数说明
  • 2017-05-11Redis总结笔记(一):安装和常用命令
  • 2017-05-11Linux下安装Redis并设置相关服务
  • 2017-05-11详解利用redis + lua解决抢红包高并发的问题
  • 2017-05-11Linux中设置Redis开机启动的方法
  • 2017-05-11利用ganglia监控redis的最新解决方法
  • 2017-05-11Redis发布订阅和实现.NET客户端详解
  • 2017-05-11用Redis实现微博关注关系
  • 2017-05-11利用yum安装Redis的方法详解
  • 2017-05-11基于Redis实现分布式锁以及任务队列

文章分类

  • MsSql
  • Mysql
  • oracle
  • MariaDB
  • DB2
  • SQLite
  • PostgreSQL
  • MongoDB
  • Redis
  • Access
  • 数据库其它
  • sybase
  • HBase

最近更新的内容

    • Redis主从实现读写分离
    • NoSQL和Redis简介及Redis在Windows下的安装和使用教程
    • phpredis提高消息队列的实时性方法(推荐)
    • Redis Stat的安装指南
    • CentOS 7下安装 redis 3.0.6并配置集群的过程详解
    • 关于redis Key淘汰策略的实现方法
    • Redis禁用命令、危险命令及规避方法
    • Redis上实现分布式锁以提高性能的方案研究
    • Redis中的数据过期策略详解
    • redis配置认证密码的方法

关于我们 - 联系我们 - 免责声明 - 网站地图

©2020-2025 All Rights Reserved. linkedu.com 版权所有