首先来看一下排序算法的一些相关概念:
1、稳定排序和非稳定排序
简单地说就是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,我们就说这种排序方法是稳定的。反之,就是非稳定的。
比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为a1,a2,a4,a3,a5,则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。假如变成a1,a4,a2,a3,a5就不是稳定的了。
2、内排序和外排序
在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序;
在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序。
3、算法的时间复杂度和空间复杂度
所谓算法的时间复杂度,是指执行算法所需要的计算工作量。
一个算法的空间复杂度,一般是指执行这个算法所需要的内存空间。
接下来我们实际来看几大排序算法的具体C语言实现:
冒泡排序 (Bubble Sort)
如果序列是从小到大排列好的,那么任意两个相邻元素,都应该满足a[i-1] <= a[i]的关系。在冒泡排序时,我们从右向左遍历数组,比较相邻的两个元素。如果两个元素的顺序是错的,那么就交换这两个元素。如果两个元素的顺序是正确的,则不做交换。经过一次遍历,我们可以保证最小的元素(泡泡)处于最左边的位置。
经过一次遍历,冒泡排序并不能保证所有的元素已经按照从小到大的排列好。因此,我们需要重新从右向左遍历数组元素,并进行冒泡排序。这一次遍历,我们不用考虑最左端的元素。然后继续进行最多为n-1次的遍历。
如果某次遍历过程中,元素都没有发生交换,那么说明数组已经排序好,可以中止停止排序。最坏的情况是在起始数组中,最大的元素位于最左边,那么冒泡算法必须经过n-1次遍历才能将数组排列好,而不能提前完成排序。
/*By Vamei*/ /*swap the neighbors if out of order*/ void bubble_sort(int a[], int ac) { /*use swap*/ int i,j; int sign; for (j = 0; j < ac-1; j++) { sign = 0; for(i = ac-1; i > j; i--) { if(a[i-1] > a[i]) { sign = 1; swap(a+i, a+i-1); } } if (sign == 0) break; } }</div>
插入排序 (Insertion Sort)
假设在新生报到的时候,我们将新生按照身高排好队(也就是排序)。如果这时有一名学生加入,我们将该名学生加入到队尾。如果这名学生比前面的学生低,那么就让该学生和前面的学生交换位置。这名学生最终会换到应在的位置。这就是插入排序的基本原理。
对于起始数组来说,我们认为最初,有一名学生,也就是最左边的元素(i=0),构成一个有序的队伍。
随后有第二个学生(i=1)加入队伍,第二名学生交换到应在的位置;随后第三个学生加入队伍,第三名学生交换到应在的位置…… 当n个学生都加入队伍时,我们的排序就完成了。
/*By Vamei*/ /*insert the next element into the sorted part*/ void insert_sort(int a[], int ac) { /*use swap*/ int i,j; for (j=1; j < ac; j++) { i = j-1; while((i>=0) && (a[i+1] < a[i])) { swap(a+i+1, a+i); i--; } } }</div>
选择排序 (Selection Sort)
排序的最终结果:任何一个元素都不大于位于它右边的元素 (a[i] <= a[j], if i <= j)。所以,在有序序列中,最小的元素排在最左的位置,第二小的元素排在i=1的位置…… 最大的元素排在最后。
选择排序是先找到起始数组中最小的元素,将它交换到i=0;然后寻找剩下元素中最小的元素,将它交换到i=1的位置…… 直到找到第二大的元素,将它交换到n-2的位置。这时,整个数组的排序完成。
/*By Vamei*/ /*find the smallest of the rest, then append to the sorted part*/ void select_sort(int a[], int ac) { /*use swap*/ int i,j; int min_idx; for (j = 0; j < ac-1; j++) { min_idx = j; for (i = j+1; i < ac; i++) { if (a[i] < a[min_idx]) { min_idx = i; } } swap(a+j, a+min_idx); } }</div>
希尔排序 (Shell Sort)
我们在冒泡排序中提到,最坏的情况发生在大的元素位于数组的起始。这些位于数组起始的大元素需要多次遍历,才能交换到队尾。这样的元素被称为乌龟(turtle)。
乌龟元素的原因在于,冒泡排序总是相邻的两个元素比较并交换。所以每次从右向左遍历,大元素只能向右移动一位。(小的元素位于队尾,被称为兔子(rabbit)元素,它们可以很快的交换到队首。)
希尔排序是以更大的间隔来比较和交换元素,这样,大的元素在交换的时候,可以向右移动不止一个位置,从而更快的移动乌龟元素。比如,可以将数组分为4个子数组(i=4k, i=4k+1, i=4k+2, i=4k+3),对每个子数组进行冒泡排序。比如子数组i=0,4,8,12...。此时,每次交换的间隔为4。
完成对四个子数组的排序后,数组的顺序并不一定能排列好。希尔排序会不断减小间隔,重新形成子数组,并对子数组冒泡排序…… 当间隔减小为1时,就相当于对整个数组进行了一次冒泡排序。随后,数组的顺序就排列好了。
希尔排序不止可以配合冒泡排序,还可以配合其他的排序方法完成。
/*By Vamei*/ /*quickly sort the turtles at the tail of the array*/ void shell_sort(int a[], int ac) { int step; int i,j; int nsub; int *sub; /* initialize step */ step = 1; while(step < ac) step = 3*step + 1; /* when step becomes 1, it's equivalent to the bubble sort*/ while(step > 1) { /* step will go down to 1 at most */ step = step/3 + 1; for(i=0; i<step; i++) { /* pick an element every step, and combine into a sub-array */ nsub = (ac - i - 1)/step + 1; sub = (int *) malloc(sizeof(int)*nsub); for(j=0; j<nsub; j++) { sub[j] = a[i+j*step]; } /* sort the sub-array by bubble sorting. It could be other sorting methods */ bubble_sort(sub, nsub); /* put back the sub-array*/ for(j=0; j<nsub; j++) { a[i+j*step] = sub[j]; } /* free sub-array */ free(sub); } } }</div>
Shell Sorting依赖于间隔(step)的选取。一个常见的选择是将本次间隔设置为上次间隔的1/1.3。见参考书籍。
归并排序 (Merge Sort)
如果我们要将一副扑克按照数字大小排序。此前已经有两个人分别将其中的一半排好顺序。那么我们可以将这两堆扑克向上放好,假设小的牌在上面。此时,我们将看到牌堆中最上的两张牌。
我们取两张牌中小的那张取出放在手中。两个牌堆中又是两张牌暴露在最上面,继续取小的那张放在手中…… 直到所有的牌都放入手中,那么整副牌就排好顺序了。这就是归并排序。
下面的实现中,使用递归:
/*By Vamei*/ /*recursively merge two sorted arrays*/ void merge_sort(int *a, int ac) { int i, j, k; int ac1, ac2; int *ah1, *ah2; int *container; /*base case*/ if (ac <= 1) return; /*split the array into two*/ ac1 = ac/2; ac2 = ac - ac1; ah1 = a + 0; ah2 = a + ac1; /*recursion*/ merge_sort(ah1, ac1); merge_sort(ah2, ac2); /*merge*/ i = 0; j = 0; k = 0; container = (int *) malloc(sizeof(int)*ac); while(i<ac1 && j<ac2) { if (ah1[i] <= ah2[j]) { container[k++] = ah1[i++]; } else { container[k++] = ah2[j++]; } } while (i < ac1) { container[k++] = ah1[i++]; } while (j < ac2) { container[k++] = ah2[j++]; } /*copy back the sorted array*/ for(i=0; i<ac; i++) { a[i] = container[i]; } /*free space*/ free(container); }</div>
快速排序 (Quick Sort)
我们依然考虑按照身高给学生排序。在快速排序中,我们随便挑出一个学生,以该学生的身高为参考(pivot)。然后让比该学生低的站在该学生的右边,剩下的站在该学生的左边。
很明显,所有的学生被分成了两组。该学生右边的学生的身高都大于该学生左边的学生的身高。
我们继续,在低身高学生组随便挑出一个学生,将低身高组的学生分为两组(很低和不那么低)。同样,将高学生组也分为两组(不那么高和很高)。
如此继续细分,直到分组中只有一个学生。当所有的分组中都只有一个学生时,则排序完成。
在下面的实现中,使用递归: