• linkedu视频
  • 平面设计
  • 电脑入门
  • 操作系统
  • 办公应用
  • 电脑硬件
  • 动画设计
  • 3D设计
  • 网页设计
  • CAD设计
  • 影音处理
  • 数据库
  • 程序设计
  • 认证考试
  • 信息管理
  • 信息安全
菜单
linkedu.com
  • 网页制作
  • 数据库
  • 程序设计
  • 操作系统
  • CMS教程
  • 游戏攻略
  • 脚本语言
  • 平面设计
  • 软件教程
  • 网络安全
  • 电脑知识
  • 服务器
  • 视频教程
  • JavaScript
  • ASP.NET
  • PHP
  • 正则表达式
  • AJAX
  • JSP
  • ASP
  • Flex
  • XML
  • 编程技巧
  • Android
  • swift
  • C#教程
  • vb
  • vb.net
  • C语言
  • Java
  • Delphi
  • 易语言
  • vc/mfc
  • 嵌入式开发
  • 游戏开发
  • ios
  • 编程问答
  • 汇编语言
  • 微信小程序
  • 数据结构
  • OpenGL
  • 架构设计
  • qt
  • 微信公众号
您的位置:首页 > 程序设计 >C#教程 > C#计算矩阵的逆矩阵方法实例分析

C#计算矩阵的逆矩阵方法实例分析

作者:北风其凉 字体:[增加 减小] 来源:互联网 时间:2017-05-28

北风其凉 通过本文主要向大家介绍了马桶c的个人空间,c语言,欲情 c max,维生素c,奔驰c200等相关知识,希望对您有所帮助,也希望大家支持linkedu.com www.linkedu.com

本文实例讲述了C#计算矩阵的逆矩阵方法。分享给大家供大家参考。具体如下:

1.代码思路

1)对矩阵进行合法性检查:矩阵必须为方阵
2)计算矩阵行列式的值(Determinant函数)
3)只有满秩矩阵才有逆矩阵,因此如果行列式的值为0(在代码中以绝对值小于1E-6做判断),则终止函数,报出异常
4)求出伴随矩阵(AdjointMatrix函数)
5)逆矩阵各元素即其伴随矩阵各元素除以矩阵行列式的商

2.函数代码

(注:本段代码只实现了一个思路,可能并不是该问题的最优解)

/// <summary>
/// 求矩阵的逆矩阵
/// </summary>
/// <param name="matrix"></param>
/// <returns></returns>
public static double[][] InverseMatrix(double[][] matrix)
{
 //matrix必须为非空
 if (matrix == null || matrix.Length == 0)
 {
  return new double[][] { };
 }
 //matrix 必须为方阵
 int len = matrix.Length;
 for (int counter = 0; counter < matrix.Length; counter++)
 {
  if (matrix[counter].Length != len)
  {
   throw new Exception("matrix 必须为方阵");
  }
 }
 //计算矩阵行列式的值
 double dDeterminant = Determinant(matrix);
 if (Math.Abs(dDeterminant) <= 1E-6)
 {
  throw new Exception("矩阵不可逆");
 }
 //制作一个伴随矩阵大小的矩阵
 double[][] result = AdjointMatrix(matrix);
 //矩阵的每项除以矩阵行列式的值,即为所求
 for (int i = 0; i < matrix.Length; i++)
 {
  for (int j = 0; j < matrix.Length; j++)
  {
   result[i][j] = result[i][j] / dDeterminant;
  }
 }
 return result;
}
/// <summary>
/// 递归计算行列式的值
/// </summary>
/// <param name="matrix">矩阵</param>
/// <returns></returns>
public static double Determinant(double[][] matrix)
{
 //二阶及以下行列式直接计算
 if (matrix.Length == 0) return 0;
 else if (matrix.Length == 1) return matrix[0][0];
 else if (matrix.Length == 2)
 {
  return matrix[0][0] * matrix[1][1] - matrix[0][1] * matrix[1][0];
 }
 //对第一行使用“加边法”递归计算行列式的值
 double dSum = 0, dSign = 1;
 for (int i = 0; i < matrix.Length; i++)
 {
  double[][] matrixTemp = new double[matrix.Length - 1][];
  for (int count = 0; count < matrix.Length - 1; count++)
  {
   matrixTemp[count] = new double[matrix.Length - 1];
  }
  for (int j = 0; j < matrixTemp.Length; j++)
  {
   for (int k = 0; k < matrixTemp.Length; k++)
   {
    matrixTemp[j][k] = matrix[j + 1][k >= i ? k + 1 : k];
   }
  }
  dSum += (matrix[0][i] * dSign * Determinant(matrixTemp));
  dSign = dSign * -1;
 }
 return dSum;
}
/// <summary>
/// 计算方阵的伴随矩阵
/// </summary>
/// <param name="matrix">方阵</param>
/// <returns></returns>
public static double[][] AdjointMatrix(double [][] matrix)
{
 //制作一个伴随矩阵大小的矩阵
 double[][] result = new double[matrix.Length][];
 for (int i = 0; i < result.Length; i++)
 {
  result[i] = new double[matrix[i].Length];
 }
 //生成伴随矩阵
 for (int i = 0; i < result.Length; i++)
 {
  for (int j = 0; j < result.Length; j++)
  {
   //存储代数余子式的矩阵(行、列数都比原矩阵少1)
   double[][] temp = new double[result.Length - 1][];
   for (int k = 0; k < result.Length - 1; k++)
   {
    temp[k] = new double[result[k].Length - 1];
   }
   //生成代数余子式
   for (int x = 0; x < temp.Length; x++)
   {
    for (int y = 0; y < temp.Length; y++)
    {
     temp[x][y] = matrix[x < i ? x : x + 1][y < j ? y : y + 1];
    }
   }
   //Console.WriteLine("代数余子式:");
   //PrintMatrix(temp);
   result[j][i] = ((i + j) % 2 == 0 ? 1 : -1) * Determinant(temp);
  }
 }
 //Console.WriteLine("伴随矩阵:");
 //PrintMatrix(result);
 return result;
}
/// <summary>
/// 打印矩阵
/// </summary>
/// <param name="matrix">待打印矩阵</param>
private static void PrintMatrix(double[][] matrix, string title = "")
{
 //1.标题值为空则不显示标题
 if (!String.IsNullOrWhiteSpace(title))
 {
  Console.WriteLine(title);
 }
 //2.打印矩阵
 for (int i = 0; i < matrix.Length; i++)
 {
  for (int j = 0; j < matrix[i].Length; j++)
  {
   Console.Write(matrix[i][j] + "\t");
   //注意不能写为:Console.Write(matrix[i][j] + '\t');
  }
  Console.WriteLine();
 }
 //3.空行
 Console.WriteLine();
}
</div>

3.Main函数调用

static void Main(string[] args)
{
 double[][] matrix = new double[][] 
 {
  new double[] { 1, 2, 3 }, 
  new double[] { 2, 2, 1 },
  new double[] { 3, 4, 3 } 
 };
 PrintMatrix(matrix, "原矩阵");
 PrintMatrix(AdjointMatrix(matrix), "伴随矩阵");
 Console.WriteLine("行列式的值为:" + Determinant(matrix) + '\n');
 PrintMatrix(InverseMatrix(matrix), "逆矩阵");
 Console.ReadLine();
}

</div>

4.执行结果

希望本文所述对大家的C#程序设计有所帮助。

</div>
分享到:QQ空间新浪微博腾讯微博微信百度贴吧QQ好友复制网址打印

您可能想查找下面的文章:

  • C#利用ReportViewer生成报表
  • C#基于正则去掉注释的方法示例
  • C#中new的用法及与override的区别分析
  • C#实现两个richtextbox控件滚动条同步滚动的简单方法
  • C# for循环的经典案例集锦
  • C#操作word的方法示例
  • C#使用WebClient登录网站并抓取登录后的网页信息实现方法
  • C# WinForm制作异形窗体与控件的方法
  • C#实现Excel表数据导入Sql Server数据库中的方法
  • C#使用NPOI上传excel

相关文章

  • 2017-05-28C#中的扩展方法详解
  • 2017-05-28c#用Treeview实现FolderBrowerDialog 和动态获取系统图标(运用了Win32 dll类库)
  • 2017-05-28C#开发微信公众号接口开发
  • 2017-05-28C#中的多态深入理解
  • 2017-05-28C#实现主窗体最小化后出现悬浮框及双击悬浮框恢复原窗体的方法
  • 2017-05-28C#之WinForm WebBrowser实用技巧汇总
  • 2017-05-28分享两种实现Winform程序的多语言支持的多种解决方案
  • 2017-05-28C#给PDF文件添加水印
  • 2017-05-28C#读取文件MD5值的实现代码
  • 2017-05-28C#中使用IrisSkin2.dll美化WinForm程序界面的方法

文章分类

  • JavaScript
  • ASP.NET
  • PHP
  • 正则表达式
  • AJAX
  • JSP
  • ASP
  • Flex
  • XML
  • 编程技巧
  • Android
  • swift
  • C#教程
  • vb
  • vb.net
  • C语言
  • Java
  • Delphi
  • 易语言
  • vc/mfc
  • 嵌入式开发
  • 游戏开发
  • ios
  • 编程问答
  • 汇编语言
  • 微信小程序
  • 数据结构
  • OpenGL
  • 架构设计
  • qt
  • 微信公众号

最近更新的内容

    • C#枚举类型和结构体详解
    • c#开发word批量转pdf源码分享
    • 自己编写sqlhelper类示例分享
    • C#事务处理(Execute Transaction)实例解析
    • 举例讲解C#编程中对设计模式中的单例模式的运用
    • C#实现向指定文本文件添加内容的方法
    • System.Data.OleDb.OleDbException: 未指定的错误的完美解决方法
    • C#递归遍历窗体所有textbox控件并设置textbox事件的方法
    • C#页面之间跳转功能的小结
    • c#在sql中存取图片image示例

关于我们 - 联系我们 - 免责声明 - 网站地图

©2020-2025 All Rights Reserved. linkedu.com 版权所有