• linkedu视频
  • 平面设计
  • 电脑入门
  • 操作系统
  • 办公应用
  • 电脑硬件
  • 动画设计
  • 3D设计
  • 网页设计
  • CAD设计
  • 影音处理
  • 数据库
  • 程序设计
  • 认证考试
  • 信息管理
  • 信息安全
菜单
linkedu.com
  • 网页制作
  • 数据库
  • 程序设计
  • 操作系统
  • CMS教程
  • 游戏攻略
  • 脚本语言
  • 平面设计
  • 软件教程
  • 网络安全
  • 电脑知识
  • 服务器
  • 视频教程
  • JavaScript
  • ASP.NET
  • PHP
  • 正则表达式
  • AJAX
  • JSP
  • ASP
  • Flex
  • XML
  • 编程技巧
  • Android
  • swift
  • C#教程
  • vb
  • vb.net
  • C语言
  • Java
  • Delphi
  • 易语言
  • vc/mfc
  • 嵌入式开发
  • 游戏开发
  • ios
  • 编程问答
  • 汇编语言
  • 微信小程序
  • 数据结构
  • OpenGL
  • 架构设计
  • qt
  • 微信公众号
您的位置:首页 > 程序设计 >Java > Java开发学习 Java数组操作工具

Java开发学习 Java数组操作工具

作者:欧阳鹏 字体:[增加 减小] 来源:互联网 时间:2017-05-28

欧阳鹏 通过本文主要向大家介绍了Java开发学习 Java数组操作工具等相关知识,希望对您有所帮助,也希望大家支持linkedu.com www.linkedu.com

看到网上的一段关于对数组操作的代码,觉得有用,在此备用。

import java.util.Arrays; 
import java.util.List; 
import java.util.Map; 
import java.util.Random; 
import java.util.TreeMap; 
 
/** 
 * @desc 数组操作工具 
 * @author OuyangPeng 
 * @datatime 2013-5-11 10:31:02 
 * 
 */ 
public class MyArrayUtils { 
 
  /** 
   * 排序算法的分类如下: 1.插入排序(直接插入排序、折半插入排序、希尔排序); 2.交换排序(冒泡泡排序、快速排序); 
   * 3.选择排序(直接选择排序、堆排序); 4.归并排序; 5.基数排序。 
   * 
   * 关于排序方法的选择: (1)若n较小(如n≤50),可采用直接插入或直接选择排序。 
   * (2)若文件初始状态基本有序(指正序),则应选用直接插人、冒泡或随机的快速排序为宜; 
   * (3)若n较大,则应采用时间复杂度为O(nlgn)的排序方法:快速排序、堆排序或归并排序。 
   * 
   */ 
 
  /** 
   * 交换数组中两元素 
   * 
   * @since 1.1 
   * @param ints 
   *      需要进行交换操作的数组 
   * @param x 
   *      数组中的位置1 
   * @param y 
   *      数组中的位置2 
   * @return 交换后的数组 
   */ 
  public static int[] swap(int[] ints, int x, int y) { 
    int temp = ints[x]; 
    ints[x] = ints[y]; 
    ints[y] = temp; 
    return ints; 
  } 
 
  /** 
   * 冒泡排序方法:相邻两元素进行比较 性能:比较次数O(n^2),n^2/2;交换次数O(n^2),n^2/4<br> 
   * 冒泡排序(Bubble Sort)是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,<br> 
   * 如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,<br> 
   * 也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。<br> 
      冒泡排序算法的运作如下:<br> 
     1. 比较相邻的元素。如果第一个比第二个大,就交换他们两个。<br> 
     2. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。<br> 
     3. 针对所有的元素重复以上的步骤,除了最后一个。<br> 
     4. 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。<br> 
   * @since 1.1 
   * @param source 
   *      需要进行排序操作的数组 
   * @return 排序后的数组 
   */ 
  public static int[] bubbleSort(int[] source) { 
    /*for (int i = 0; i < source.length - 1; i++) { // 最多做n-1趟排序 
      for (int j = 0; j < source.length - i - 1; j++) { // 对当前无序区间score[0......length-i-1]进行排序(j的范围很关键,这个范围是在逐步缩小的) 
        if (source[j] > source[j + 1]) { // 把大的值交换到后面 
          swap(source, j, j + 1); 
        } 
      } 
    }*/ 
    for (int i = source.length - 1; i>0 ; i--) {  
      for (int j = 0; j < i; j++) {  
        if (source[j] > source[j + 1]) {  
          swap(source, j, j + 1); 
        } 
      } 
    } 
    return source; 
  } 
 
  /** 
   * 选择排序法 方法:选择排序(Selection sort)是一种简单直观的排序算法,其平均时间复杂度为O(n2)。 
   *   它的工作原理如下。首先在未排序序列中找到最小元素,存放到排序序列的起始位置,然后, 
   *   再从剩余未排序元素中继续寻找最小元素,然后放到排序序列末尾。以此类推,直到所有元素均排序完毕。 
   * 性能:选择排序的交换操作介于0和(n-1)次之间, 选择排序的比较操作为n(n-1)/2次之间, 
   *    选择排序的赋值操作介于0和3(n-1)次之间,其平均时间复杂度为O(n2) 
   * 交换次数比冒泡排序少多了,由于交换所需CPU时间比比较所需的CUP时间多,所以选择排序比冒泡排序快。 
   * 但是N比较大时,比较所需的CPU时间占主要地位,所以这时的性能和冒泡排序差不太多,但毫无疑问肯定要快些。 
   * 
   * @since 1.1 
   * @param source 
   *      需要进行排序操作的数组 
   * @return 排序后的数组 
   */ 
  public static int[] selectSort(int[] source) { 
    for (int i = 0; i < source.length; i++) { 
      for (int j = i + 1; j < source.length; j++) { 
        if (source[i] > source[j]) { 
          swap(source, i, j); 
        } 
      } 
    } 
    return source; 
  } 
 
  /** 
   * 插入排序 方法:将一个记录插入到已排好序的有序表(有可能是空表)中,从而得到一个新的记录数增1的有序表。 性能:比较次数O(n^2),n^2/4 
   * 复制次数O(n),n^2/4 比较次数是前两者的一般,而复制所需的CPU时间较交换少,所以性能上比冒泡排序提高一倍多,而比选择排序也要快。 
   * 
   * @since 1.1 
   * @param source 
   *      需要进行排序操作的数组 
   * @return 排序后的数组 
   */ 
  public static int[] insertSort(int[] source) { 
 
    for (int i = 1; i < source.length; i++) { 
      for (int j = i; (j > 0) && (source[j] < source[j - 1]); j--) { 
        swap(source, j, j - 1); 
      } 
    } 
    return source; 
  } 
 
  /** 
   * 快速排序 快速排序使用分治法(Divide and conquer)策略来把一个序列(list)分为两个子序列(sub-lists)。 步骤为: 
   * 1. 从数列中挑出一个元素,称为 "基准"(pivot), 2. 
   * 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面 
   * (相同的数可以到任一边)。在这个分割之后,该基准是它的最后位置。这个称为分割(partition)操作。 3. 
   * 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。 
   * 递回的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了 
   * 。虽然一直递回下去,但是这个算法总会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。 
   * 
   * @since 1.1 
   * @param source 
   *      需要进行排序操作的数组 
   * @return 排序后的数组 
   */ 
  public static int[] quickSort(int[] source) { 
    return qsort(source, 0, source.length - 1); 
  } 
 
  /** 
   * 快速排序的具体实现,排正序 
   * 
   * @since 1.1 
   * @param source 
   *      需要进行排序操作的数组 
   * @param low 
   *      开始低位 
   * @param high 
   *      结束高位 
   * @return 排序后的数组 
   */ 
  private static int[] qsort(int source[], int low, int high) { 
    int i, j, x; 
    if (low < high) { 
      i = low; 
      j = high; 
      x = source[i]; 
      while (i < j) { 
        while (i < j && source[j] > x) { 
          j--; 
        } 
        if (i < j) { 
          source[i] = source[j]; 
          i++; 
        } 
        while (i < j && source[i] < x) { 
          i++; 
        } 
        if (i < j) { 
          source[j] = source[i]; 
          j--; 
        } 
      } 
      source[i] = x; 
      qsort(source, low, i - 1); 
      qsort(source, i + 1, high); 
    } 
    return source; 
  } 
 
  // ///////////////////////////////////////////// 
  // 排序算法结束 
  // //////////////////////////////////////////// 
  /** 
   * 二分法查找 查找线性表必须是有序列表 
   * 
   * @since 1.1 
   * @param source 
   *      需要进行查找操作的数组 
   * @return 需要查找的值在数组中的位置,若未查到则返回-1 
   */ 
  public static int[] binarySearch(int[] source) { 
    int i,j; 
    int low, high, mid; 
    int temp; 
    for (i = 0; i < source.length; i++) { 
      temp=source[i]; 
      low=0; 
      high=i-1; 
      while (low <= high) { 
        mid = (low + high)/2; 
        if (source[mid]>temp) { 
          high=mid-1; 
        } else { 
          low = mid + 1; 
        } 
      } 
      for (j= i-1; j>high;j--)  
        source[j+1]=source[j]; 
      source[high+1]=temp; 
    } 
    return source; 
  } 
 
  /** 
   * 反转数组 
   * 
   * @since 1.1 
   * @param source 
   *      需要进行反转操作的数组 
   * @return 反转后的数组 
   */ 
  public static int[] reverse(int[] source) { 
    int length = source.length; 
    int temp = 0; 
    for (int i = 0; i < length >> 1; i++) { 
      temp = source[i]; 
      source[i] = source[length - 1 - i]; 
      source[length - 1 - i] = temp; 
    } 
    return source; 
  } 
 
  /** 
   * 在当前位置插入一个元素,数组中原有元素向后移动; 如果插入位置超出原数组,则抛IllegalArgumentException异常 
   * 
   * @param array 
   * @param index 
   * @param insertNumber 
   * @return 
   */ 
  public static int[] insert(int[] array, int index, int insertNumber) { 
    if (arra



 
分享到:QQ空间新浪微博腾讯微博微信百度贴吧QQ好友复制网址打印

您可能想查找下面的文章:

相关文章

  • 2017-07-23[译]深入字节码操作:使用ASM和Javassist创建审核日志
  • 2017-05-28初识Spring Boot框架之Spring Boot的自动配置
  • 2017-05-28spring框架下websocket的搭建
  • 2017-05-28java json字符串转JSONObject和JSONArray以及取值的实例
  • 2017-05-28浅谈java对象转json,数字精确出现丢失问题
  • 2017-05-28springboot中thymeleaf模板使用详解
  • 2017-05-28java 数据的加密与解密普遍实例代码
  • 2017-05-28常用数据库的驱动程序及JDBC URL分享
  • 2017-05-28Java 网络编程socket编程等详解
  • 2017-05-28Spring Boot 开发私有即时通信系统(WebSocket)

文章分类

  • JavaScript
  • ASP.NET
  • PHP
  • 正则表达式
  • AJAX
  • JSP
  • ASP
  • Flex
  • XML
  • 编程技巧
  • Android
  • swift
  • C#教程
  • vb
  • vb.net
  • C语言
  • Java
  • Delphi
  • 易语言
  • vc/mfc
  • 嵌入式开发
  • 游戏开发
  • ios
  • 编程问答
  • 汇编语言
  • 微信小程序
  • 数据结构
  • OpenGL
  • 架构设计
  • qt
  • 微信公众号

最近更新的内容

    • SpringBoot JPA 表关联查询实例
    • 使用Lucene实现一个简单的布尔搜索功能
    • 第三方网站微信登录java代码实现
    • SWT(JFace)体验之ProgressBar
    • Java数据结构之散列表(动力节点Java学院整理)
    • 详解spring多线程与定时任务
    • java 中Thread.join()的使用方法
    • JAVA 中Spring的@Async用法总结
    • Spring3 MVC请求参数获取的几种方法小结
    • Spring Boot集成Druid数据库连接池

关于我们 - 联系我们 - 免责声明 - 网站地图

©2020-2025 All Rights Reserved. linkedu.com 版权所有