• linkedu视频
  • 平面设计
  • 电脑入门
  • 操作系统
  • 办公应用
  • 电脑硬件
  • 动画设计
  • 3D设计
  • 网页设计
  • CAD设计
  • 影音处理
  • 数据库
  • 程序设计
  • 认证考试
  • 信息管理
  • 信息安全
菜单
linkedu.com
  • 网页制作
  • 数据库
  • 程序设计
  • 操作系统
  • CMS教程
  • 游戏攻略
  • 脚本语言
  • 平面设计
  • 软件教程
  • 网络安全
  • 电脑知识
  • 服务器
  • 视频教程
  • JavaScript
  • ASP.NET
  • PHP
  • 正则表达式
  • AJAX
  • JSP
  • ASP
  • Flex
  • XML
  • 编程技巧
  • Android
  • swift
  • C#教程
  • vb
  • vb.net
  • C语言
  • Java
  • Delphi
  • 易语言
  • vc/mfc
  • 嵌入式开发
  • 游戏开发
  • ios
  • 编程问答
  • 汇编语言
  • 微信小程序
  • 数据结构
  • OpenGL
  • 架构设计
  • qt
  • 微信公众号
您的位置:首页 > 程序设计 >编程技巧 > 算法系列15天速成 第十二天 树操作【中】

算法系列15天速成 第十二天 树操作【中】

作者: 字体:[增加 减小] 来源:互联网 时间:2017-05-12

通过本文主要向大家介绍了算法系列15天速成 第十二天 树操作【中】等相关知识,希望对您有所帮助,也希望大家支持linkedu.com www.linkedu.com

先前说了树的基本操作,我们采用的是二叉链表来保存树形结构,当然二叉有二叉的困扰之处,比如我想找到当前结点的“前驱”和“后继”,那么我们就必须要遍历一下树,然后才能定位到该“节点”的“前驱”和“后继”,每次定位都是O(n),这不是我们想看到的,那么有什么办法来解决呢?

   (1) 在节点域中增加二个指针域,分别保存“前驱”和“后继”,那么就是四叉链表了,哈哈,还是有点浪费空间啊。

   (2) 看下面的这个二叉树,我们知道每个结点有2个指针域,4个节点就有8个指针域,其实真正保存节点的指针

            仅有3个,还有5个是空闲的,那么为什么我们不用那些空闲的指针域呢,达到资源的合理充分的利用。

一: 线索二叉树

1  概念

      刚才所说的在空闲的指针域里面存放“前驱”和“后继”就是所谓的线索。

        <1>  左线索:   在空闲的左指针域中存放该“结点”的“前驱”被认为是左线索。

        <2>  右线索:   在空闲的右指针域中存放该“结点“的”后继“被认为是右线索。

      当“二叉链表”被套上这种线索,就被认为是线索链表,当“二叉树”被套上这种线索就被认为是线索二叉树,当然线索根据

二叉树的遍历形式不同被分为“先序线索”,“中序线索”,“后序线索”。

2  结构图

      说了这么多,我们还是上图说话,就拿下面的二叉树,我们构建一个中序线索二叉树,需要多动动脑子哟。

     <1> 首先要找到“中序遍历”中的首结点D,因为“D结点”是首节点,所以不存在“前驱”,左指针自然是空,

            ”D节点”的右指针存放的是“后继”,那么根据“中序遍历”的规则应该是B,所以D的右指针存放着B节点。

     <2>  接着就是“B节点”,他的左指针不为空,所以就不管了,但是他的“右指针”空闲,根据规则“B结点“的右

    指针存放的是"A结点“。

     <3>  然后就是“A节点”,他已经被塞的满满的,所以就没有“线索”可言了。

     <4>  最后就是“C节点”,根据规则,他的“左指针”存放着就是“A节点“,”C节点“是最后一个节点,右指针自然就是空的,你懂的。

3 基本操作   

   常用的操作一般有“创建线索二叉树”,”查找后继节点“,”查找前驱节点“,”遍历线索二叉树“,下面的操作我们就以”中序遍历“来创建中序线索二叉树。

<1>  线索二叉树结构

          从“结构图”中可以看到,现在结点的指针域中要么是”子节点(SubTree)“或者是”线索(Thread)“,此时就要设立标志位来表示指针域存放的是哪一种。

    #region 线索二叉树的结构
    /// <summary>
/// 线索二叉树的结构
/// </summary>
/// <typeparam name="T"></typeparam>
    public class ThreadTree<T>
    {
        public T data;
        public ThreadTree<T> left;
        public ThreadTree<T> right;
        public NodeFlag leftFlag;
        public NodeFlag rightFlag;
    }
    #endregion
</div>

<2>  创建线索二叉树

        刚才也说了如何构建中序线索二叉树,在代码实现中,我们需要定义一个节点来保存当前节点的前驱,我练习的时候迫不得已,只能使用两个

    ref来实现地址操作,达到一个Tree能够让两个变量来操作。

            //先左子树遍历,寻找起始点
            BinTreeThreadingCreate_LDR(ref tree.left, ref prevNode);

            //如果left为空,则说明该节点可以放“线索”
            tree.leftFlag = (tree.left == null) ? NodeFlag.Thread : NodeFlag.SubTree;

            //如果right为空,则说明该节点可以放“线索”
            tree.rightFlag = (tree.right == null) ? NodeFlag.Thread : NodeFlag.SubTree;

            if (prevNode != null)
            {
                if (tree.leftFlag == NodeFlag.Thread)
                    tree.left = prevNode;
                if (prevNode.rightFlag == NodeFlag.Thread)
                    prevNode.right = tree;
            }

            //保存前驱节点
            prevNode = tree;

            BinTreeThreadingCreate_LDR(ref tree.right, ref prevNode);
        }
        #endregion
</div>

<3> 查找后继结点

         现在大家都知道,后继结点都是保存在“结点“的右指针域中,那么就存在”两种情况“。

            《1》 拿“B节点“来说,他没有右孩子,则肯定存放着线索(Thread),所以我们直接O(1)的返回他的线索即可。

            《2》 拿“A节点”来说,他有右孩子,即右指针域存放的是SubTree,悲哀啊,如何才能得到“A节点“的后继呢?其实也很简单,

根据”中序“的定义,”A节点“的后继必定是”A节点“的右子树往左链找的第一个没有左孩子的节点(只可意会,不可言传,嘻嘻)。

分享到:QQ空间新浪微博腾讯微博微信百度贴吧QQ好友复制网址打印

您可能想查找下面的文章:

相关文章

  • 2017-05-12Git 命令使用技巧提供工作效率
  • 2017-05-12到初创公司工作的五个理由
  • 2017-05-12如何在网页中显示服务器时间
  • 2017-05-12Git 教程之基本操作详解
  • 2017-10-15NIOS EDS最容易出错的地方
  • 2017-05-12分享10个程序员常用的的代码文本编辑器
  • 2017-05-12获取目录下所有文件名的代码
  • 2017-05-12戏说编码发展史
  • 2017-09-12SVN提交代码时出现Attempted to lock an already-locked dir
  • 2017-08-28Elasticsearch如何更新mapping

文章分类

  • JavaScript
  • ASP.NET
  • PHP
  • 正则表达式
  • AJAX
  • JSP
  • ASP
  • Flex
  • XML
  • 编程技巧
  • Android
  • swift
  • C#教程
  • vb
  • vb.net
  • C语言
  • Java
  • Delphi
  • 易语言
  • vc/mfc
  • 嵌入式开发
  • 游戏开发
  • ios
  • 编程问答
  • 汇编语言
  • 微信小程序
  • 数据结构
  • OpenGL
  • 架构设计
  • qt
  • 微信公众号

最近更新的内容

    • 关于进制转换 二进制与十六进制
    • redis Fundication
    • 多种语言(big5\gbk\gb2312\utf8\Shift_JIS\iso8859-1)的网页编码切换解决方案归纳
    • 各种语言、服务器301跳转代码全集
    • 微信公众平台开发——群发信息
    • 高性能WEB开发 web性能测试工具推荐
    • HTTP请求 GET与POST方法的区别
    • markdown简介和语法介绍
    • 国外开发者谈为何放弃PHP而改用Python
    • 设计高可用和高负载的网站系统的几个注意事项

关于我们 - 联系我们 - 免责声明 - 网站地图

©2020-2025 All Rights Reserved. linkedu.com 版权所有