网友通过本文主要向大家介绍了lrucache原理,lrucache实现原理,lrucache,android lrucache,lrucache用法等相关知识,希望对您有所帮助,也希望大家支持linkedu.com www.linkedu.com
LruCache原理解析,lrucache解析
LruCache是一个泛型类,它内部采用LinkedHashMap,并以强引用的方式存储外界的缓存对象,提供get和put方法来完成缓存的获取和添加操作。当缓存满时,LruCache会移除较早的缓存对象,然后再添加新的缓存对象。对Java中四种引用类型还不是特别清楚的读者可以自行查阅相关资料,这里不再给出介绍。 介绍源码前 先介绍LinkedHashMap一些特性 LinkedHashMap实现与HashMap的不同之处在于,后者维护着一个运行于所有条目的双重链接列表。此链接列表定义了迭代顺序,该迭代顺序可以是插入顺序或者是访问顺序。 对于LinkedHashMap而言,它继承与HashMap、底层使用哈希表与双向链表来保存所有元素。其基本操作与父类HashMap相似,它通过重写父类相关的方法,来实现自己的链接列表特性 1) Entry元素: LinkedHashMap采用的hash算法和HashMap相同,但是它重新定义了数组中保存的元素Entry,该Entry除了保存当前对象的引用外,还保存了其上一个元素before和下一个元素after的引用,从而在哈希表的基础上又构成了双向链接列表。 1) Entry元素: LinkedHashMap采用的hash算法和HashMap相同,但是它重新定义了数组中保存的元素Entry,该Entry除了保存当前对象的引用外,还保存了其上一个元素before和下一个元素after的引用,从而在哈希表的基础上又构成了双向链接列表。 /** * 双向链表的表头元素。 */ private transient Entry<K,V> header; /** * LinkedHashMap的Entry元素。 * 继承HashMap的Entry元素,又保存了其上一个元素before和下一个元素after的引用。 */ private static class Entry<K,V> extends HashMap.Entry<K,V> { Entry<K,V> before, after; …… } 2) 读取: LinkedHashMap重写了父类HashMap的get方法,实际在调用父类getEntry()方法取得查找的元素后,再判断当排序模式accessOrder为true时,记录访问顺序,将最新访问的元素添加到双向链表的表头(这个特性保证了LRU最近最少使用),并从原来的位置删除。由于的链表的增加、删除操作是常量级的,故并不会带来性能的损失。
@Override public V get(Object key) {
/*
* This method is overridden to eliminate the need for a polymorphic
* invocation in superclass at the expense of code duplication.
*/
if (key == null) {
HashMapEntry<K, V> e = entryForNullKey;
if (e == null)
return null;
if (accessOrder)
makeTail((LinkedEntry<K, V>) e);
return e.value;
}
int hash = Collections.secondaryHash(key);
HashMapEntry<K, V>[] tab = table;
for (HashMapEntry<K, V> e = tab[hash & (tab.length - 1)];
e != null; e = e.next) {
K eKey = e.key;
if (eKey == key || (e.hash == hash && key.equals(eKey))) {
if (accessOrder)
makeTail((LinkedEntry<K, V>) e);
return e.value;
}
}
return null;
}
/**
* Relinks the given entry to the tail of the list. Under access ordering,
* this method is invoked whenever the value of a pre-existing entry is
* read by Map.get or modified by Map.put.
*/
private void makeTail(LinkedEntry<K, V> e) {
// Unlink e
e.prv.nxt = e.nxt;
e.nxt.prv = e.prv;
// Relink e as tail
LinkedEntry<K, V> header = this.header;
LinkedEntry<K, V> oldTail = header.prv;
e.nxt = header;
e.prv = oldTail;
oldTail.nxt = header.prv = e;
modCount++;
}
源码分析
public class LruCache<K, V> {
private final LinkedHashMap<K, V> map;
/** Size of this cache in units. Not necessarily the number of elements. */
private int size;//当前缓存大小
private int maxSize;//缓存最大
private int putCount;//put次数
private int createCount;
private int evictionCount;//回收次数
private int hitCount;//命中次数
private int missCount;//没有命中次数
/**
* @param maxSize for caches that do not override {@link #sizeOf}, this is
* the maximum number of entries in the cache. For all other caches,
* this is the maximum sum of the sizes of the entries in this cache.
*/
public LruCache(int maxSize) {
if (maxSize <= 0) {
throw new IllegalArgumentException("maxSize <= 0");
}
this.maxSize = maxSize;
this.map = new LinkedHashMap<K, V>(0, 0.75f, true);
}
/**
* Sets the size of the cache.
*
* @param maxSize The new maximum size.
*/
public void resize(int maxSize) {
if (maxSize <= 0) {
throw new IllegalArgumentException("maxSize <= 0");
}
synchronized (this) {
this.maxSize = maxSize;
}
trimToSize(maxSize);
}
/**
* 返回缓存中key对应的value,如果不存在则创建一个并返回。
* 如果value被返回,它就会被移动到队列的头部,如果value为null或者不能被创建,方法返回nul
*/
public final V get(K key) {
if (key == null) {
throw new NullPointerException("key == null");
}
V mapValue;
synchronized (this) {
mapValue = map.get(key);
if (mapValue != null) {
hitCount++;
return mapValue;
}
missCount++;
}
/*
* 如果未被命中,则试图创建一个value.这将会消耗较长时间,创建过程中,
* 如果要添加的value值和map中已有的值冲突,则释放已经创建value.
*/
V createdValue = create(key);
if (createdValue == null) {
return null;
}
synchronized (this) {
createCount++;
mapValue = map.put(key, createdValue);
if (mapValue != null) {
// There was a conflict so undo that last put
map.put(key, mapValue);
} else {
size += safeSizeOf(key, createdValue);
}
}
if (mapValue != null) {
entryRemoved(false, key, createdValue, mapValue);
return mapValue;
} else {
//判断缓存是否越界
trimToSize(maxSize);
return createdValue;
}
}
/**
* 缓存key对应的value.value 会被移动至队列头部。
* the queue.
*
* @return the previous value mapped by {@code key}.
*/
public final V put(K key, V value) {
if (key == null || value == null) {
throw new NullPointerException("key == null || value == null");
}
V previous;
synchronized (this) {
putCount++;
size += safeSizeOf(key, value);
previous = map.put(key, value);
if (previous != null) {
size -= safeSizeOf(key, previous);
}
}
if (previous != null) {
entryRemoved(false, key, previous, value);
}
trimToSize(maxSize);
return previous;
}
/**
* Remove the eldest entries until the total of remaining entries is at or
* below the requested size.
*
* @param maxSize the maximum size of the cache before returning. May be -1
* to evict even 0-sized elements.
*/
public void trimToSize(int maxSize) {
while (true) {
K key;
V value;
synchronized (this) {
if (size < 0 || (map.isEmpty() && size != 0)) {
throw new IllegalStateException(getClass().getName()
+ ".sizeOf() is reporting inconsistent results!");
}
if (size <= maxSize) {
break;
}
Map.Entry<K, V> toEvict = map.eldest();
if (toEvict == null) {
break;
}
key = toEvict.getKey();
value = toEvict.getValue();
map.remove(key);
size -= safeSizeOf(key,

