Android应用程序内存泄漏介绍
Android应用程序内存泄漏介绍
内存泄漏和内存溢出的区别
内存溢出(out of memory)是指程序在申请内存时,没有足够的内存空间供其使用,出现out of memory。比如在我们每个Android程序在运行时系统都会给程序分配一个一定的内存空间,当程序在运行中需要的内存超出这个限制就会报内存溢出(out of memory)。
内存泄漏(memory leak)是指程序在申请内存后,无法释放已申请的内存空间。多次内存无法被释放,程序占用的内存会一直增加,直到超过系统的内存限制报内存溢出。
java中为什么会发生内存泄漏
大家在学习Java的时候,可以在阅读相关书籍的时候,关于Java的优点中,第一条就是Java是通过GC来自动管理内存的回收的,程序员不需要通过调用函数来释放内存。因此,很多人认为Java不存在内存泄漏的问题,真实的情况并不是这样,尤其是我们在开发手机和平板相关的应用的时候,往往是由于内存泄漏的累计很快导致程序的崩溃。想要了解这个问题,我们需要先了解Java是如何管理内存。
Java的内存管理
Java的内存管理就是对象的分配和释放的问题,在Java中,程序员需要需要通过关键字new为每个对象申请内存空间(基本类型除外),所有的对象都在堆(Heap)中分配空间。另外,对象的释放是由GC决定和执行的。在Java中,内存的分配是由程序完成的,而内存的释放由GC完成的。这种收支两条线的确是简化了程序员的工作。但同时,它也加重了JVM的负担。这也是Java运行较慢的原因之一。因为,GC为了正确的释放每个对象,GC必须监控每个对象的运行状态,包括对象的申请,引用,被引用,赋值GC都需要监控。
监视对象状态是为了更加准确地、及时地释放对象,而释放对象的根本原则就是该对象不再被引用。
为了更好理解GC的工作原理,我们可以将对象考虑为有向图的顶点,将引用关系考虑为图的有向边,有向边从引用者指向被引对象。另外,每个线程对象可以作为一个图的起始顶点,例如大多程序从main进程开始执行,那么该图就是以main进程顶点开始的一棵根树。在这个有向图中,根顶点可达的对象都是有效对象,GC将不回收这些对象。如果某个对象 (连通子图)与这个根顶点不可达(注意,该图为有向图),那么我们认为这个(这些)对象不再被引用,可以被GC回收。
以下,我们举一个例子说明如何用有向图表示内存管理。对于程序的每一个时刻,我们都有一个有向图表示JVM的内存分配情况。以下右图,就是左边程序运行到第6行的示意图。
Java使用有向图的方式进行内存管理,可以消除引用循环的问题,例如有三个对象,相互引用,只要它们和根进程不可达的,那么GC也是可以回收它们的。这种方式的优点是管理内存的精度很高,但是效率较低。另外一种常用的内存管理技术是使用计数器,例如COM模型采用计数器方式管理构件,它与有向图相比,精度行低(很难处理循环引用的问题),但执行效率很高。
Java中的内存泄漏
下面,我们就可以描述什么是内存泄漏。在Java中,内存泄漏就是存在一些被分配的对象,这些对象有下面两个特点,首先,这些对象是可达的,即在有向图中,存在通路可以与其相连;其次,这些对象是无用的,即程序以后不会再使用这些对象。如果对象满足这两个条件,这些对象就可以判定为Java中的内存泄漏,这些对象不会被GC所回收,然而它却占用内存。
在C++中,内存泄漏的范围更大一些。有些对象被分配了内存空间,然后却不可达,由于C++中没有GC,这些内存将永远收不回来。在Java中,这些不可达的对象都由GC负责回收,因此程序员不需要考虑这部分的内存泄露。
通过分析,我们得知,对于C++,程序员需要自己管理边和顶点,而对于Java程序员只需要管理边就可以了(不需要管理顶点的释放)。通过这种方式,Java提高了编程的效率。
因此,通过以上分析,我们知道在Java中也有内存泄漏,但范围比C++要小一些。因为Java从语言上保证,任何对象都是可达的,所有的不可达对象都由GC管理。
对于程序员来说,GC基本是透明的,不可见的。虽然,我们只有几个函数可以访问GC,例如运行GC的函数System.gc(),但是根据Java语言规范定义, 该函数不保证JVM的垃圾收集器一定会执行。因为,不同的JVM实现者可能使用不同的算法管理GC。通常,GC的线程的优先级别较低。JVM调用GC的策略也有很多种,有的是内存使用到达一定程度时,GC才开始工作,也有定时执行的,有的是平缓执行GC,有的是中断式执行GC。但通常来说,我们不需要关心这些。除非在一些特定的场合,GC的执行影响应用程序的性能,例如对于基于Web的实时系统,如网络游戏等,用户不希望GC突然中断应用程序执行而进行垃圾回收,那么我们需要调整GC的参数,让GC能够通过平缓的方式释放内存,例如将垃圾回收分解为一系列的小步骤执行,Sun提供的HotSpot JVM就支持这一特性。
Android内存泄漏总结
在我们开发Android程序的时候,经常会遇到内存溢出的情况,在我们这次Launcher的开发过程中,就存在内存泄漏的问题。下面结合我们在Launcher开发中遇到的实际问题,分享一下内存泄漏怎么解决。
Android中常见内存泄漏
集合类泄漏
集合类如果仅仅有添加元素的方法,而没有相应的删除机制,导致内存被占用。如果这个集合类是全局性的变量(比如类中的静态属性,全局性的 map 等即有静态引用),那么没有相应的删除机制,很可能导致集合所占用的内存只增不减。请看下面的示例代码,稍不注意还是很容易出现这种情况,比如我们都喜欢通过HashMap做一些缓存之类的事,这种情况就要多留一些心眼。
ArrayList list = new ArrayList();
for (int i = 1; i < 100; i++) {
Object o = new Object();
v.add(o);
o = null;
}
在上面的代码中list是一个全局变量,仅仅在后面把对象的引用置空是没有用的,因为对象被list持有,在本类生命周期没有结束的情况下,是不会被gc回收的。
单例造成的内存泄漏。
由于单例的静态特性使得其生命周期跟应用的生命周期一样长,所以如果使用不恰当的话,使单例持有的对象一直存在,很容易造成内存泄漏。比如下面一个典型的例子:
public class AppManager {
private static AppManager instance;
private Context context;
private AppManager(Context context) {
this.context = context;
}
public static AppManager getInstance(Context context) {
if (instance == null) {
instance = new AppManager(context);
}
return instance;
}
}
上面的例子中如果传进来的Context是Activity,AppManager是静态的变量,它的生命周期和Application是一样的。由于该Activity一直被该该instance 一直持有,所以传进来的Activity无法被回收。将会产生内存泄漏。解决方法:此处可以传入Application,因为Application的生命周期是从开始到结束的。
非静态内部类创建静态实例造成的内存泄漏非静态内部类默认持有该类,如果在本类中它的实例是静态的,就表示它的生命周期是和Application一样长。那么默认非静态内部类的静态实例持有了该类,该资源不会被gc掉,导致内存泄漏。
public class MainActivity extends Activity{
private static LeakInstance mLeakInstance;
@override
public void onCreate(Bundle onsaveInstance){
......
}
class LeakInstance{
.....
}
}
上面的代码片段中,LeakInstance 是一个在Activity中的内部类,它有一个静态实例mLeakInstance,该静态实例的生命周期和Application是一样的,同时它默认持有了MainActivity,这样会导致Activity不会被gc掉,导致内存泄漏。
匿名内部类运行在异步线程。
匿名内部类默认持有它所在类的引用,如果把这个匿名内部类放到一个线程中取运行,而这个线程的生命周期和这个类的生命周期不一样的时候,会导致该类被线程所持有,不能释放。导致内存泄漏。请看如下示例代码:
public class MainActiviy extends Activity{
private Therad mThread = null;
private Runnable myRunnable = new Runnable{
public void run{
......
}
}
protected void onCreate(Bundle onSaveInstance){
.......
mThread = new Thread(myRunnable);
mThread.start();
}
}
在上面的例子中myRunnable 持有了MainActiviy,mThread的生命周期和Activity不一样,MainActiviy会被持有直到Thread运行结束。导致内存泄漏。
Handler 造成的内存泄漏Handler 的使用造成的内存泄漏问题应该说是最为常见了