• linkedu视频
  • 平面设计
  • 电脑入门
  • 操作系统
  • 办公应用
  • 电脑硬件
  • 动画设计
  • 3D设计
  • 网页设计
  • CAD设计
  • 影音处理
  • 数据库
  • 程序设计
  • 认证考试
  • 信息管理
  • 信息安全
菜单
linkedu.com
  • 网页制作
  • 数据库
  • 程序设计
  • 操作系统
  • CMS教程
  • 游戏攻略
  • 脚本语言
  • 平面设计
  • 软件教程
  • 网络安全
  • 电脑知识
  • 服务器
  • 视频教程
  • JavaScript
  • ASP.NET
  • PHP
  • 正则表达式
  • AJAX
  • JSP
  • ASP
  • Flex
  • XML
  • 编程技巧
  • Android
  • swift
  • C#教程
  • vb
  • vb.net
  • C语言
  • Java
  • Delphi
  • 易语言
  • vc/mfc
  • 嵌入式开发
  • 游戏开发
  • ios
  • 编程问答
  • 汇编语言
  • 微信小程序
  • 数据结构
  • OpenGL
  • 架构设计
  • qt
  • 微信公众号
您的位置:首页 > 程序设计 >C语言 > 深入解析C++编程中线程池的使用

深入解析C++编程中线程池的使用

作者:turkeyzhou 字体:[增加 减小] 来源:互联网 时间:2017-05-28

turkeyzhou 通过本文主要向大家介绍了java中线程池,java中线程池的使用,android中线程池,程池,金陵春程池前世等相关知识,希望对您有所帮助,也希望大家支持linkedu.com www.linkedu.com

为什么需要线程池
目前的大多数网络服务器,包括Web服务器、Email服务器以及数据库服务器等都具有一个共同点,就是单位时间内必须处理数目巨大的连接请求,但处理时间却相对较短。
传 统多线程方案中我们采用的服务器模型则是一旦接受到请求之后,即创建一个新的线程,由该线程执行任务。任务执行完毕后,线程退出,这就是是“即时创建,即 时销毁”的策略。尽管与创建进程相比,创建线程的时间已经大大的缩短,但是如果提交给线程的任务是执行时间较短,而且执行次数极其频繁,那么服务器将处于 不停的创建线程,销毁线程的状态。
我们将传统方案中的线程执行过程分为三个过程:T1、T2、T3。

  1. T1:线程创建时间
  2. T2:线程执行时间,包括线程的同步等时间
  3.  T3:线程销毁时间

那么我们可以看出,线程本身的开销所占的比例为(T1+T3) / (T1+T2+T3)。如果线程执行的时间很短的话,这比开销可能占到20%-50%左右。如果任务执行时间很频繁的话,这笔开销将是不可忽略的。

 
除此之外,线程池能够减少创建的线程个数。通常线程池所允许的并发线程是有上界的,如果同时需要并发的线程数超过上界,那么一部分线程将会等待。而传统方案中,如果同时请求数目为2000,那么最坏情况下,系统可能需要产生2000个线程。尽管这不是一个很大的数目,但是也有部分机器可能达不到这种要求。
 
因此线程池的出现正是着眼于减少线程池本身带来的开销。线程池采用预创建的技术,在应用程序启动之后,将立即创建一定数量的线程(N1),放入空闲队列中。这些线程都是处于阻塞(Suspended)状态,不消耗CPU,但占用较小的内存空间。当任务到来后,缓冲池选择一个空闲线程,把任务传入此线程中运行。当N1个线程都在处理任务后,缓冲池自动创建一定数量的新线程,用于处理更多的任务。在任务执行完毕后线程也不退出,而是继续保持在池中等待下一次的任务。当系统比较空闲时,大部分线程都一直处于暂停状态,线程池自动销毁一部分线程,回收系统资源。
 
基于这种预创建技术,线程池将线程创建和销毁本身所带来的开销分摊到了各个具体的任务上,执行次数越多,每个任务所分担到的线程本身开销则越小,不过我们另外可能需要考虑进去线程之间同步所带来的开销

构建线程池框架
一般线程池都必须具备下面几个组成部分:

  • 线程池管理器:用于创建并管理线程池
  • 工作线程: 线程池中实际执行的线程
  • 任务接口: 尽管线程池大多数情况下是用来支持网络服务器,但是我们将线程执行的任务抽象出来,形成任务接口,从而是的线程池与具体的任务无关。
  • 任务队列: 线程池的概念具体到实现则可能是队列,链表之类的数据结构,其中保存执行线程。

我们实现的通用线程池框架由五个重要部分组成CThreadManage,CThreadPool,CThread,CJob,CWorkerThread,除此之外框架中还包括线程同步使用的类CThreadMutex和CCondition。
 

  • CJob是所有的任务的基类,其提供一个接口Run,所有的任务类都必须从该类继承,同时实现Run方法。该方法中实现具体的任务逻辑。
  •  
  • CThread是Linux中线程的包装,其封装了Linux线程最经常使用的属性和方法,它也是一个抽象类,是所有线程类的基类,具有一个接口Run。
  •  
  • CWorkerThread是实际被调度和执行的线程类,其从CThread继承而来,实现了CThread中的Run方法。
  •  
  • CThreadPool是线程池类,其负责保存线程,释放线程以及调度线程。
  •  
  • CThreadManage是线程池与用户的直接接口,其屏蔽了内部的具体实现。
  •  
  • CThreadMutex用于线程之间的互斥。
  •  
  • CCondition则是条件变量的封装,用于线程之间的同步。

CThreadManage直接跟客户端打交道,其接受需要创建的线程初始个数,并接受客户端提交的任务。这儿的任务是具体的非抽象的任务。CThreadManage的内部实际上调用的都是CThreadPool的相关操作。CThreadPool创建具体的线程,并把客户端提交的任务分发给CWorkerThread,CWorkerThread实际执行具体的任务。
 
理解系统组件
下面我们分开来了解系统中的各个组件。
 
CThreadManage
CThreadManage的功能非常简单,其提供最简单的方法,其类定义如下:
 

class CThreadManage
{
private:
  CThreadPool*  m_Pool;
  int     m_NumOfThread;
 
protected:
 
public:
  CThreadManage();
  CThreadManage(int num);
  virtual ~CThreadManage();
 
  void   SetParallelNum(int num);  
  void  Run(CJob* job,void* jobdata);
  void  TerminateAll(void);
};
</div>

 
其中m_Pool指向实际的线程池;m_NumOfThread是初始创建时候允许创建的并发的线程个数。另外Run和TerminateAll方法也非常简单,只是简单的调用CThreadPool的一些相关方法而已。其具体的实现如下:
 

CThreadManage::CThreadManage()
{
  m_NumOfThread = 10;
  m_Pool = new CThreadPool(m_NumOfThread);
}
 
CThreadManage::CThreadManage(int num)
{
  m_NumOfThread = num;
  m_Pool = new CThreadPool(m_NumOfThread);
}
 
CThreadManage::~CThreadManage()
{
  if(NULL != m_Pool)
  delete m_Pool;
}
 
void CThreadManage::SetParallelNum(int num)
{
  m_NumOfThread = num;
}
 
void CThreadManage::Run(CJob* job,void* jobdata)
{
  m_Pool->Run(job,jobdata);
}
 
void CThreadManage::TerminateAll(void)
{
  m_Pool->TerminateAll();
}
</div>

 
CThread
CThread 类实现了对Linux中线程操作的封装,它是所有线程的基类,也是一个抽象类,提供了一个抽象接口Run,所有的CThread都必须实现该Run方法。CThread的定义如下所示:
 

class CThread
{
private:
  int     m_ErrCode;
  Semaphore  m_ThreadSemaphore; //the inner semaphore, which is used to realize
  unsigned   long m_ThreadID;  
  bool     m_Detach;    //The thread is detached
  bool     m_CreateSuspended; //if suspend after creating
  char*    m_ThreadName;
  ThreadState m_ThreadState;   //the state of the thread
 
protected:
  void   SetErrcode(int errcode){m_ErrCode = errcode;}
  static void* ThreadFunction(void*);
 
public:
  CThread();
  CThread(bool createsuspended,bool detach);
  virtual ~CThread();
 
  virtual void Run(void) = 0;
  void   SetThreadState(ThreadState state){m_ThreadState = state;}
   bool   Terminate(void);  //Terminate the threa
  bool   Start(void);    //Start to execute the thread
  void   Exit(void);
  bool   Wakeup(void);
  ThreadState GetThreadState(void){return m_ThreadState;}
  int   GetLastError(void){return m_ErrCode;}
  void   SetThreadName(char* thrname){strcpy(m_ThreadName,thrname);}
  char*  GetThreadName(void){return m_ThreadName;}
  int   GetThreadID(void){return m_ThreadID;}
  bool   SetPriority(int priority);
  int   GetPriority(void);
  int   GetConcurrency(void);
  void   SetConcurrency(int num);
  bool   Detach(void);
  bool   Join(void);
  bool   Yield(void);
  int   Self(void);
};
</div>

 
线程的状态可以分为四种,空闲、忙碌、挂起、终止(包括正常退出和非正常退出)。由于目前Linux线程库不支持挂起操作,因此,我们的此处的挂起操作类似于暂停。如果线程创建后不想立即执行任务,那么我们可以将其“暂停”,如果需要运行,则唤醒。有一点必须注意的是,一旦线程开始执行任务,将不能被挂起,其将一直执行任务至完毕。
 
线程类的相关操作均十分简单。线程的执行入口是从Start()函数开始,其将调用函数ThreadFunction,ThreadFunction再调用实际的Run函数,执行实际的任务。
 
CThreadPool
CThreadPool是线程的承载容器,一般可以将其实现为堆栈、单向队列或者双向队列。在我们的系统中我们使用STL Vector对线程进行保存。CThreadPool的实现代码如下:
 

class CThreadPool
{
friend class CWorkerThread;
 
private:
  unsigned int m_MaxNum;  //the max thread num that can create at the same time
  unsigned int m_AvailLow; //The min num of idle thread that shoule kept
  unsigned int m_AvailHigh;  //The max num of idle thread that kept at the same time
  unsigned int m_AvailNum; //the normal thread num of idle num;
  unsigned int m_InitNum; //Normal thread num;
 
protected:
  CWorkerThread* GetIdleThread(void); 
  void  AppendToIdleList(CWorkerThread



 
分享到:QQ空间新浪微博腾讯微博微信百度贴吧QQ好友复制网址打印

您可能想查找下面的文章:

  • 深入解析C++编程中线程池的使用

相关文章

  • 2017-05-28c 调用python出现异常的原因分析
  • 2017-05-28解析如何在C语言中调用shell命令的实现方法
  • 2017-05-28使用C++递归求解跳台阶问题
  • 2017-05-28详解C++编程中数组的基本用法
  • 2017-05-28递归形式与非递归形式的斐波那契数列的用法分析
  • 2017-05-28C++实现查找中位数的O(N)算法和Kmin算法
  • 2017-05-28深入浅析 C++ 调用 Python 模块
  • 2017-05-28剖析C++中的常量表达式与省略号的相关作用
  • 2017-05-28深入分析C++中几个最不常用的关键字
  • 2017-05-28C++、python和go语言实现的简单客户端服务器代码示例

文章分类

  • JavaScript
  • ASP.NET
  • PHP
  • 正则表达式
  • AJAX
  • JSP
  • ASP
  • Flex
  • XML
  • 编程技巧
  • Android
  • swift
  • C#教程
  • vb
  • vb.net
  • C语言
  • Java
  • Delphi
  • 易语言
  • vc/mfc
  • 嵌入式开发
  • 游戏开发
  • ios
  • 编程问答
  • 汇编语言
  • 微信小程序
  • 数据结构
  • OpenGL
  • 架构设计
  • qt
  • 微信公众号

最近更新的内容

    • 从汇编看c++中extern关键字的使用
    • C语言函数指针(指向函数的指针)详解
    • c语言全盘搜索指定文件的实例代码
    • C语言指针作为函数返回值
    • 深入VC回调函数的使用详解
    • 关于STL中list容器的一些总结
    • 剖析C++编程当中指针作为函数参数的用法
    • C实现与 uint64_t 相同功能的类
    • Eclipse对printf()不能输出到控制台的快速解决方法
    • 简易Dota改键外挂程序制作

关于我们 - 联系我们 - 免责声明 - 网站地图

©2020-2025 All Rights Reserved. linkedu.com 版权所有