• linkedu视频
  • 平面设计
  • 电脑入门
  • 操作系统
  • 办公应用
  • 电脑硬件
  • 动画设计
  • 3D设计
  • 网页设计
  • CAD设计
  • 影音处理
  • 数据库
  • 程序设计
  • 认证考试
  • 信息管理
  • 信息安全
菜单
linkedu.com
  • 网页制作
  • 数据库
  • 程序设计
  • 操作系统
  • CMS教程
  • 游戏攻略
  • 脚本语言
  • 平面设计
  • 软件教程
  • 网络安全
  • 电脑知识
  • 服务器
  • 视频教程
  • JavaScript
  • ASP.NET
  • PHP
  • 正则表达式
  • AJAX
  • JSP
  • ASP
  • Flex
  • XML
  • 编程技巧
  • Android
  • swift
  • C#教程
  • vb
  • vb.net
  • C语言
  • Java
  • Delphi
  • 易语言
  • vc/mfc
  • 嵌入式开发
  • 游戏开发
  • ios
  • 编程问答
  • 汇编语言
  • 微信小程序
  • 数据结构
  • OpenGL
  • 架构设计
  • qt
  • 微信公众号
您的位置:首页 > 程序设计 >C语言 > 用C语言判断一个二叉树是否为另一个的子结构

用C语言判断一个二叉树是否为另一个的子结构

作者:zinss26914 字体:[增加 减小] 来源:互联网 时间:2017-05-28

zinss26914 通过本文主要向大家介绍了c语言二叉树,c语言二叉树的建立,c语言创建二叉树,c语言二叉树算法,c语言实现二叉树等相关知识,希望对您有所帮助,也希望大家支持linkedu.com www.linkedu.com

1、问题描述:

     如何判断一个二叉树是否是另一个的子结构?
     比如:

        2
      /   \
     9    8
    / \    /
   2  3  5
  /
6

   有个子结构是
   9
  / \
2  3

2、分析问题:
    有关二叉树的算法问题,一般都可以通过递归来解决。那么写成一个正确的递归程序,首先一定要分析正确递归结束的条件。

拿这道题来讲,什么时候递归结束。

<1>第二个二叉树root2为空时,说明root2是第一棵二叉树的root1的子结构,返回true。

<2>当root1为空时,此时root2还没为空,说明root2不是root1的子结构,返回false。

<3>递归下面有两种思路:

    方法一:现在root1中找结点值与root2的值相等的结点,如果找到就判断root2是不是这个结点开头的子结构。所以,首先IsSubTree()判断。

    方法二:就是直接判断,相同就递归判断root2左右子树是不是也是相应的子结构。如果值不相同,就分别递归到root1的左右子树寻找。尤其要注意最后两句递归的逻辑判断。

3、习题实例

    题目描述:  
    输入两颗二叉树A,B,判断B是不是A的子结构。 
    输入: 
    输入可能包含多个测试样例,输入以EOF结束。 
    对于每个测试案例,输入的第一行一个整数n,m(1<=n<=1000,1<=m<=1000):n代表将要输入的二叉树A的节点个数(节点从1开始计数),m代表将要输入的二叉树B的节点个数(节点从1开始计数)。接下来一行有n个数,每个数代表A树中第i个元素的数值,接下来有n行,第一个数Ki代表第i个节点的子孩子个数,接下来有Ki个树,代表节点i子孩子节点标号。接下来m+1行,与树A描述相同。 
    输出: 
    对应每个测试案例, 
    若B是A的子树输出”YES”(不包含引号)。否则,输出“NO”(不包含引号)。 
    样例输入: 
    7 3 
    8 8 7 9 2 4 7 
    2 2 3 
    2 4 5 
    0 
    0 
    2 6 7 
    0 
    0 
    8 9 2 
    2 2 3 
    0 
    0 

    实现
    第一步,在A树中查找和B树根节点一样的值,其实就是树的前序遍历,建议递归,方便(ps:非递归无非就是用个栈存储结点而已,没什么技术含量)

  

 /** 
   * 第一步判断,遍历A树查找是否有等于B树根结点的子树 
   */ 
  int judgeChildTree(struct btree *ahead, int numa, struct btree *bhead, int numb) 
  { 
    int flag = 0; 
   
    if (numa != -1 && numb != -1) { 
      if (ahead[numa].value == bhead[numb].value) 
        flag = doesTree1HasTree2(ahead, numa, bhead, numb); 
   
      if (! flag && ahead[numa].lchild != -1) 
        flag = judgeChildTree(ahead, ahead[numa].lchild, bhead, numb); 
   
      if (! flag && ahead[numa].rchild != -1) 
        flag = judgeChildTree(ahead, ahead[numa].rchild, bhead, numb); 
    } 
   
    return flag; 
  } 
</div>

    第二步,进一步判断A中以R为根节点的子树是不是与B树具有相同的结点

  /** 
   * 第二步判断,判断A树是否有B树的子结构 
   */ 
  int doesTree1HasTree2(struct btree *ahead, int numa, struct btree *bhead, int numb) 
  { 
    if (numb == -1)  
      return 1; 
    if (numa == -1) 
      return 0; 
   
    if (ahead[numa].value != bhead[numb].value) 
      return 0; 
   
    return (doesTree1HasTree2(ahead, ahead[numa].lchild, bhead, bhead[numb].lchild) && 
      doesTree1HasTree2(ahead, ahead[numa].rchild, bhead, bhead[numb].rchild)); 
  } 

</div>


完整代码

   

 #include <stdio.h> 
  #include <stdlib.h> 
   
  // 二叉树结点定义 
  struct btree 
  { 
    int value; 
    int lchild, rchild; 
  }; 
   
  // A树和B树的最多结点数 
  int n, m; 
   
  /** 
   * 第二步判断,判断A树是否有B树的子结构 
   */ 
  int doesTree1HasTree2(struct btree *ahead, int numa, struct btree *bhead, int numb) 
  { 
    if (numb == -1)  
      return 1; 
    if (numa == -1) 
      return 0; 
   
    if (ahead[numa].value != bhead[numb].value) 
      return 0; 
   
    return (doesTree1HasTree2(ahead, ahead[numa].lchild, bhead, bhead[numb].lchild) && 
      doesTree1HasTree2(ahead, ahead[numa].rchild, bhead, bhead[numb].rchild)); 
  } 
   
  /** 
   * 第一步判断,遍历A树查找是否有等于B树根结点的子树 
   */ 
  int judgeChildTree(struct btree *ahead, int numa, struct btree *bhead, int numb) 
  { 
    int flag = 0; 
   
    if (numa != -1 && numb != -1) { 
      if (ahead[numa].value == bhead[numb].value) 
        flag = doesTree1HasTree2(ahead, numa, bhead, numb); 
   
      if (! flag && ahead[numa].lchild != -1) 
        flag = judgeChildTree(ahead, ahead[numa].lchild, bhead, numb); 
   
      if (! flag && ahead[numa].rchild != -1) 
        flag = judgeChildTree(ahead, ahead[numa].rchild, bhead, numb); 
    } 
   
    return flag; 
  } 
   
  int main(void) 
  { 
    int i, data, count, left, right, flag; 
    struct btree *ahead, *bhead; 
   
    while (scanf("%d %d", &n, &m) != EOF) { 
      // 获取A树的节点值 
      ahead = (struct btree *)malloc(sizeof(struct btree) * n); 
      for (i = 0; i < n; i ++) { 
        scanf("%d", &data); 
        ahead[i].value = data; 
        ahead[i].lchild = ahead[i].rchild = -1; 
      } 
   
      for (i = 0; i < n; i ++) { 
        scanf("%d", &count); 
        if (count == 0) { 
          continue; 
        } else { 
          if (count == 1) { 
            scanf("%d", &left); 
            ahead[i].lchild = left - 1; 
          } else { 
            scanf("%d %d", &left, &right); 
            ahead[i].lchild = left - 1; 
            ahead[i].rchild = right - 1; 
          } 
        } 
      } 
   
      // 获取B树的节点值 
      bhead = (struct btree *)malloc(sizeof(struct btree) * m); 
      for (i = 0; i < m; i ++) { 
        scanf("%d", &data); 
        bhead[i].value = data; 
        bhead[i].lchild = bhead[i].rchild = -1; 
      } 
   
      for (i = 0; i < m; i ++) { 
        scanf("%d", &count); 
        if (count == 0) { 
          continue; 
        } else { 
          if (count == 1) { 
            scanf("%d", &left); 
            bhead[i].lchild = left - 1; 
          } else { 
            scanf("%d %d", &left, &right); 
            bhead[i].lchild = left - 1; 
            bhead[i].rchild = right - 1; 
          } 
        } 
      } 
   
      // 判断B树是否为A的子树 
      if (n == 0 || m == 0) { 
        printf("NO\n"); 
        continue; 
      } 
   
      flag = judgeChildTree(ahead, 0, bhead, 0); 
      if (flag) 
        printf("YES\n"); 
      else 
        printf("NO\n"); 
   
      free(ahead); 
      free(bhead); 
    } 
   
    return 0; 
  } 
</div>

</div>
分享到:QQ空间新浪微博腾讯微博微信百度贴吧QQ好友复制网址打印

您可能想查找下面的文章:

  • C语言数据结构二叉树简单应用
  • C语言中计算二叉树的宽度的两种方式
  • C语言 数据结构之中序二叉树实例详解
  • C 语言二叉树几种遍历方法详解及实例
  • C语言 二叉树的链式存储实例
  • 使用C语言构建基本的二叉树数据结构
  • 用C语言判断一个二叉树是否为另一个的子结构
  • C语言实现二叉树遍历的迭代算法
  • C语言实现找出二叉树中某个值的所有路径的方法
  • C语言二叉树的非递归遍历实例分析

相关文章

  • 2017-05-28基于C中一个行压缩图的简单实现代码
  • 2017-05-28Objective-C的内省(Introspection)用法小结
  • 2017-05-28C++中的const和constexpr详解
  • 2017-05-28c++实现二叉查找树示例
  • 2017-05-28C++中对象的常引用总结
  • 2017-05-28C++编程中删除运算符与相等运算符的使用解析
  • 2017-05-28为什么要学习C语言 C语言优势分析
  • 2017-05-28解析C++ 浮点数的格式化输出
  • 2017-05-28C语言中6组指针和自增运算符结合方式的运算顺序问题
  • 2017-05-28C++中十种内部排序算法的比较分析

文章分类

  • JavaScript
  • ASP.NET
  • PHP
  • 正则表达式
  • AJAX
  • JSP
  • ASP
  • Flex
  • XML
  • 编程技巧
  • Android
  • swift
  • C#教程
  • vb
  • vb.net
  • C语言
  • Java
  • Delphi
  • 易语言
  • vc/mfc
  • 嵌入式开发
  • 游戏开发
  • ios
  • 编程问答
  • 汇编语言
  • 微信小程序
  • 数据结构
  • OpenGL
  • 架构设计
  • qt
  • 微信公众号

最近更新的内容

    • 详解Bucket Sort桶排序算法及C++代码实现示例
    • C++实现二叉树非递归遍历方法实例总结
    • 指针与const限定符的使用分析
    • C++ 冒泡排序数据结构、算法及改进算法
    • 浅谈Linux环境下并发编程中C语言fork()函数的使用
    • STL list链表的用法详细解析
    • C语言 坐标移动详解及实例代码
    • 函数指针与指针函数的学习总结
    • C++利用链栈实现表达式求值
    • C++常用的#include头文件总结

关于我们 - 联系我们 - 免责声明 - 网站地图

©2020-2025 All Rights Reserved. linkedu.com 版权所有