通过本文主要向大家介绍了不要被困难吓倒,不要被失败吓倒,不要被困难吓倒的诗句,不要被风雪吓倒,不要被困难吓倒作文等相关知识,希望对您有所帮助,也希望大家支持linkedu.com www.linkedu.com
阶乘(Factorial)是个很有意思的函数,但是不少人都比较怕它,我们来看看两个与阶乘相关的问题:
1、 给定一个整数N,那么N的阶乘N!末尾有多少个0呢?例如:N=10,N!=3 628 800,N!的末尾有两个0。
2、求N!的二进制表示中最低位1的位置。
有些人碰到这样的题目会想:是不是要完整计算出N!的值?如果溢出怎么办?事实上,如果我们从"哪些数相乘能得到10"这个角度来考虑,问题就变得简单了。
首先考虑,如果N!= K×10^M,且K不能被10整除,那么N!末尾有M个0。再考虑对N!进行质因数分解,N!=(2^x)×(3^y)×(5^z)…,由于10 = 2×5,所以M只跟X和Z相关,每一对2和5相乘可以得到一个10,于是M = min(X, Z)。不难看出X大于等于Z,因为能被2整除的数出现的频率比能被5整除的数高得多,所以把公式简化为M = Z。
根据上面的分析,只要计算出Z的值,就可以得到N!末尾0的个数。
【问题1的解法一】
要计算Z,最直接的方法,就是计算i(i =1, 2, …, N)的因式分解中5的指数,然后求和:
</div>
1、 给定一个整数N,那么N的阶乘N!末尾有多少个0呢?例如:N=10,N!=3 628 800,N!的末尾有两个0。
2、求N!的二进制表示中最低位1的位置。
有些人碰到这样的题目会想:是不是要完整计算出N!的值?如果溢出怎么办?事实上,如果我们从"哪些数相乘能得到10"这个角度来考虑,问题就变得简单了。
首先考虑,如果N!= K×10^M,且K不能被10整除,那么N!末尾有M个0。再考虑对N!进行质因数分解,N!=(2^x)×(3^y)×(5^z)…,由于10 = 2×5,所以M只跟X和Z相关,每一对2和5相乘可以得到一个10,于是M = min(X, Z)。不难看出X大于等于Z,因为能被2整除的数出现的频率比能被5整除的数高得多,所以把公式简化为M = Z。
根据上面的分析,只要计算出Z的值,就可以得到N!末尾0的个数。
【问题1的解法一】
要计算Z,最直接的方法,就是计算i(i =1, 2, …, N)的因式分解中5的指数,然后求和:
</div>