1.引子
我们人类是一种贪婪的动物,如果给您一个容量一定的背包和一些大小不一的物品,裝到背包里面的物品就归您,遇到这种好事大家一定不会错过,用力塞不一定是最好的办法,用脑子才行,下面就教您如何解决这样的问题,以获得更多的奖品。
2.应用场景
在一个物品向量中找到一个子集满足条件如下 :
1)这个子集加起来的体积大小不能大于指定阀值
2)这个物品子集加起来价值大小是向量V中所有满足条件1的子集中最大的
3.分析
背包问题有好多版本,本文只研究0/1版本,即对一个物体要么选用,要么就抛弃,不能将一个物体再继续细分的情况。这种问题最简单的方法就是找出这个向量的所有子集,如同找出幂集中的子集一样,但这种遍历的方法恐怕并不会被聪明的我们所使用,现在举办这些活动的电视台也非常聪明,他们不但要求您能将物品装进去,而且指定操作时间,这样当您慢慢腾腾的装进去倒出来的时候,时间恐怕早就到了,最终您可能一无所获,这可不是我们希望的结果,我们需要使用一些策略:第一次我们可以从大小小于背包容量的物品中随意挑取一个,这样可以尽量争取时间,选取第一个后的每一个我们希望其都是最优的,这样能节省一定的时间。假设有这么一组物品,其大小和价值如下表所示:
物品编号 | 大小 | 价值 |
---|---|---|
1 | 2 | 1 |
2 | 3 | 4 |
3 | 4 | 3 |
4 | 5 | 6 |
5 | 6 | 8 |
给我们一个容量为12的背包,让我们装上面这些物品,我们可以用下面的方法来解决寻找最优组合的问题
建立一个二围数组,数组包括n个行(n为物品数量)和capcity+1列
首先我们对第一个物品进行取舍,因为物品1大小为2,先将物品1加入背包,物品1的大小为2,则cap>=2的时候能容纳item1,这时候背包里面物品的价值为item1.Value=1,得到以下数组
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
接下来处理物品1和物品2的子集,item2的大小为3,则只有cap=3的时候才能容纳item2,当cap=3的时候讲好能容纳item2,此时背包里面价值item2.value=4,且剩余空间为0,当cap=4的时候,能容纳item2,且剩余空间为1,不能容item1,当cap=5的时候,可以容纳item1+item2,此时的价值为1+4 =5,得到第二行
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
0 | 0 | 1 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
下面分析物品三,物品二,物品一的子集,物品三的大小为4,当cap=4的时候就能容纳item3,但此时背包里面的价值为3,明显小于上一行中的cap=4的价值(3<4),所以cap=4时不能将item3放进去,所以第三行的4位置应该和第二行的4位置一致,当cap=5的时候能够容纳item3,且剩余空间为1,和cap=4情况一样,拷贝上一行同一位置的值,当cap=6,放置item3后剩余2,能容item1和item4,二者的总价值:1+3=4<5,故拷贝上一行同位置的值,cap=7的时候,能容item2+item3,总价值大小为7,大于>5,故cap=8的时的值为7,cap=9的时候仍能容难item3+item2,value=7,cap=8的时候,能容纳item1+item2+item3,且总价值大小为8,大于上一行同位置的值,故cap>=9时候,总价值大小为8,第三行:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
0 | 0 | 1 | 4 |