Java 中的锁通常分为两种:
通过关键字 synchronized 获取的锁,我们称为同步锁,上一篇有介绍到:Java 多线程并发编程 Synchronized 关键字。
java.util.concurrent(JUC)包里的锁,如通过继承接口 Lock 而实现的 ReentrantLock(互斥锁),继承 ReadWriteLock 实现的 ReentrantReadWriteLock(读写锁)。
本篇主要介绍 ReentrantLock(互斥锁)。
ReentrantLock(互斥锁)
ReentrantLock 互斥锁,在同一时间只能被一个线程所占有,在被持有后并未释放之前,其他线程若想获得该锁只能等待或放弃。
ReentrantLock 互斥锁是可重入锁,即某一线程可多次获得该锁。
公平锁 and 非公平锁
public ReentrantLock() {
sync = new NonfairSync();
}
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
</div>
由 ReentrantLock 的构造函数可见,在实例化 ReentrantLock 的时候我们可以选择实例化一个公平锁或非公平锁,而默认会构造一个非公平锁。
公平锁与非公平锁区别在于竞争锁时的有序与否。公平锁可确保有序性(FIFO 队列),非公平锁不能确保有序性(即使也有 FIFO 队列)。
然而,公平是要付出代价的,公平锁比非公平锁要耗性能,所以在非必须确保公平的条件下,一般使用非公平锁可提高吞吐率。所以 ReentrantLock 默认的构造函数也是“不公平”的。
一般使用
DEMO1:
public class Test {
private static class Counter {
private ReentrantLock mReentrantLock = new ReentrantLock();
public void count() {
mReentrantLock.lock();
try {
for (int i = 0; i < 6; i++) {
System.out.println(Thread.currentThread().getName() + ", i = " + i);
}
} finally {
// 必须在 finally 释放锁
mReentrantLock.unlock();
}
}
}
private static class MyThread extends Thread {
private Counter mCounter;
public MyThread(Counter counter) {
mCounter = counter;
}
@Override
public void run() {
super.run();
mCounter.count();
}
}
public static void main(String[] var0) {
Counter counter = new Counter();
// 注:myThread1 和 myThread2 是调用同一个对象 counter
MyThread myThread1 = new MyThread(counter);
MyThread myThread2 = new MyThread(counter);
myThread1.start();
myThread2.start();
}
}
</div>
DEMO1 输出:
Thread-0, i = 0 Thread-0, i = 1 Thread-0, i = 2 Thread-0, i = 3 Thread-0, i = 4 Thread-0, i = 5 Thread-1, i = 0 Thread-1, i = 1 Thread-1, i = 2 Thread-1, i = 3 Thread-1, i = 4 Thread-1, i = 5</div>
DEMO1 仅使用了 ReentrantLock 的 lock 和 unlock 来提现一般锁的特性,确保线程的有序执行。此种场景 synchronized 也适用。
锁的作用域
DEMO2:
public class Test {
private static class Counter {
private ReentrantLock mReentrantLock = new ReentrantLock();
public void count() {
for (int i = 0; i < 6; i++) {
mReentrantLock.lock();
// 模拟耗时,突出线程是否阻塞
try{
Thread.sleep(100);
System.out.println(Thread.currentThread().getName() + ", i = " + i);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
// 必须在 finally 释放锁
mReentrantLock.unlock();
}
}
}
public void doOtherThing(){
for (int i = 0; i < 6; i++) {
// 模拟耗时,突出线程是否阻塞
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);
}
}
}
public static void main(String[] var0) {
final Counter counter = new Counter();
new Thread(new Runnable() {
@Override
public void run() {
counter.count();
}
}).start();
new Thread(new Runnable() {
@Override
public void run() {
counter.doOtherThing();
}
}).start();
}
}
</div>
DEMO2 输出:
Thread-0, i = 0 Thread-1 doOtherThing, i = 0 Thread-0, i = 1 Thread-1 doOtherThing, i = 1 Thread-0, i = 2 Thread-1 doOtherThing, i = 2 Thread-0, i = 3 Thread-1 doOtherThing, i = 3 Thread-0, i = 4 Thread-1 doOtherThing, i = 4 Thread-0, i = 5 Thread-1 doOtherThing, i = 5</div>
DEMO3:
public class Test {
private static class Counter {
private ReentrantLock mReentrantLock = new ReentrantLock();
public void count() {
for (int i = 0; i < 6; i++) {
mReentrantLock.lock();
// 模拟耗时,突出线程是否阻塞
try{
Thread.sleep(100);
System.out.println(Thread.currentThread().getName() + ", i = " + i);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
// 必须在 finally 释放锁
mReentrantLock.unlock();
}
}
}
public void doOtherThing(){
mReentrantLock.lock();
try{
for (int i = 0; i < 6; i++) {
// 模拟耗时,突出线程是否阻塞
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);
}
}finally {
mReentrantLock.unlock();
}
}
}
public static void main(String[] var0) {
final Counter counter = new Counter();
new Thread(new Runnable() {
@Override
public void run() {
counter.count();
}
}).start();
new Thread(new Runnable() {
@Override
public void run() {
counter.doOtherThing();
}
}).start();
}
}
</div>
DEMO3 输出:
Thread-0, i = 0 Thread-0, i = 1 Thread-0, i = 2 Thread-0, i = 3 Thread-0, i = 4 Thread-0, i = 5 Thread-1 doOtherThing, i = 0 Thread-1 doOtherThing, i = 1 Thread-1 doOtherThing, i = 2 Thread-1 doOtherThing, i = 3 Thread-1 doOtherThing, i = 4 Thread-1 doOtherThing, i = 5</div>
结合 DEMO2 和 DEMO3 输出可见,锁的作用域在于 mReentrantLock,因为所来自于 mReentrantLock。
可终止等待
DEMO4:
public class Test {
static final int TIMEOUT = 300;
private static class Counter {
private ReentrantLock mReentrantLock = new ReentrantLock();
public void count() {
try{
//lock() 不可中断
mReentrantLock.lock();
// 模拟耗时,突出线程是否阻塞
for (int i = 0; i < 6; i++) {
long startTime = System.currentTimeMillis();
while (true) {
if (System.currentTimeMillis() - startTime > 100)
break;
}
System.out.println(Thread.currentThread().getName() + ", i = " + i);
}
} finally {
// 必须在 finally 释放锁
mReentrantLock.unlock();
}
}
public void doOtherThing(){
try{
//lockInterruptibly() 可中断,若线程没有中断,则获取锁
mReentrantLock.lockInterruptibly();
for (int i = 0; i < 6; i++) {
// 模拟耗时,突出线程是否阻塞
long startTime = System.currentTimeMillis();
while (tru

