• linkedu视频
  • 平面设计
  • 电脑入门
  • 操作系统
  • 办公应用
  • 电脑硬件
  • 动画设计
  • 3D设计
  • 网页设计
  • CAD设计
  • 影音处理
  • 数据库
  • 程序设计
  • 认证考试
  • 信息管理
  • 信息安全
菜单
linkedu.com
  • 网页制作
  • 数据库
  • 程序设计
  • 操作系统
  • CMS教程
  • 游戏攻略
  • 脚本语言
  • 平面设计
  • 软件教程
  • 网络安全
  • 电脑知识
  • 服务器
  • 视频教程
  • JavaScript
  • ASP.NET
  • PHP
  • 正则表达式
  • AJAX
  • JSP
  • ASP
  • Flex
  • XML
  • 编程技巧
  • Android
  • swift
  • C#教程
  • vb
  • vb.net
  • C语言
  • Java
  • Delphi
  • 易语言
  • vc/mfc
  • 嵌入式开发
  • 游戏开发
  • ios
  • 编程问答
  • 汇编语言
  • 微信小程序
  • 数据结构
  • OpenGL
  • 架构设计
  • qt
  • 微信公众号
您的位置:首页 > 程序设计 >C语言 > 详细总结C++的排序算法

详细总结C++的排序算法

作者: 字体:[增加 减小] 来源:互联网 时间:2017-05-28

通过本文主要向大家介绍了c++排序算法,快速排序算法c++,c++冒泡排序算法,c++插入排序算法,c++归并排序算法等相关知识,希望对您有所帮助,也希望大家支持linkedu.com www.linkedu.com

排序算法经过了很长时间的演变,产生了很多种不同的方法。对于初学者来说,对它们进行整理便于理解记忆显得很重要。每种算法都有它特定的使用场合,很难通用。因此,我们很有必要对所有常见的排序算法进行归纳。

我不喜欢死记硬背,我更偏向于弄清来龙去脉,理解性地记忆。比如下面这张时间复杂度图,我们将围绕这张图来分析。

上面的这张图来自一个PPT。它概括了数据结构中的所有常见的排序算法,给大家总结如下。

区分稳定与不稳定:快速、希尔、堆、选择不稳定,其他排序算法均稳定。

平均时间复杂度:冒泡,选择,插入是O(n2),其他均是O(n*log2n)

最坏时间复杂度:冒泡,选择,插入,快排是O(n2),其他是O(n*log2n)

平均和最坏时间复杂度:只有O(n2)和O(n*log2n)两种,冒泡,选择,插入是O(n2),最坏情况下加一个快排,其他均是O(nlog2n)。

一、直接插入排序(插入排序)。

     1、算法的伪代码(这样便于理解):    

   INSERTION-SORT (A, n)       A[1 . . n] 
   for j ←2 to n 
     do key ← A[ j] 
     i ← j – 1 
     while i > 0 and A[i] > key 
        do A[i+1] ← A[i] 
          i ← i – 1 
     A[i+1] = key
</div>

     2、思想:如下图所示,每次选择一个元素K插入到之前已排好序的部分A[1…i]中,插入过程中K依次由后向前与A[1…i]中的元素进行比较。若发现发现A[x]>=K,则将K插入到A[x]的后面,插入前需要移动元素。

     3、算法时间复杂度。  

        最好的情况下:正序有序(从小到大),这样只需要比较n次,不需要移动。因此时间复杂度为O(n)  

        最坏的情况下:逆序有序,这样每一个元素就需要比较n次,共有n个元素,因此实际复杂度为O(n­2)  

       平均情况下:O(n­2)

     4、稳定性。  

     理解性记忆比死记硬背要好。因此,我们来分析下。稳定性,就是有两个相同的元素,排序先后的相对位置是否变化,主要用在排序时有多个排序规则的情况下。在插入排序中,K1是已排序部分中的元素,当K2和K1比较时,直接插到K1的后面(没有必要插到K1的前面,这样做还需要移动!!),因此,插入排序是稳定的。

二、希尔排序(插入排序)

     1、思想:希尔排序也是一种插入排序方法,实际上是一种分组插入方法。先取定一个小于n的整数d1作为第一个增量,把表的全部记录分成d1个组,所有距离为d1的倍数的记录放在同一个组中,在各组内进行直接插入排序;然后,取第二个增量d2(<d1),重复上述的分组和排序,直至所取的增量dt=1

     例如:将 n 个记录分成 d 个子序列: 

       { R[0],   R[d],     R[2d],…,     R[kd] } 
       { R[1],   R[1+d], R[1+2d],…,R[1+kd] }
         …
       { R[d-1],R[2d-1],R[3d-1],…,R[(k+1)d-1] }

    

     说明:d=5 时,先从A[d]开始向前插入,判断A[d-d],然后A[d+1]与A[(d+1)-d]比较,如此类推,这一回合后将原序列分为d个组。<由后向前>

     2、时间复杂度。  

     最好情况:由于希尔排序的好坏和步长d的选择有很多关系,因此,目前还没有得出最好的步长如何选择(现在有些比较好的选择了,但不确定是否是最好的)。所以,不知道最好的情况下的算法时间复杂度。  

     最坏情况下:O(N*logN),最坏的情况下和平均情况下差不多。  

     平均情况下:O(N*logN)

     3、稳定性。  

     由于多次插入排序,我们知道一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以shell排序是不稳定的。(有个猜测,方便记忆:一般来说,若存在不相邻元素间交换,则很可能是不稳定的排序。)

三、冒泡排序(交换排序)

       1、基本思想:通过无序区中相邻记录关键字间的比较和位置的交换,使关键字最小的记录如气泡一般逐渐往上“漂浮”直至“水面”。

       

      2、时间复杂度  

      最好情况下:正序有序,则只需要比较n次。故,为O(n)  

      最坏情况下:  逆序有序,则需要比较(n-1)+(n-2)+……+1,故,为O(N*N)

      3、稳定性  
      排序过程中只交换相邻两个元素的位置。因此,当两个数相等时,是没必要交换两个数的位置的。所以,它们的相对位置并没有改变,冒泡排序算法是稳定的!

四、快速排序(交换排序)
     1、思想:它是由冒泡排序改进而来的。在待排序的n个记录中任取一个记录(通常取第一个记录),把该记录放入适当位置后,数据序列被此记录划分成两部分。所有关键字比该记录关键字小的记录放置在前一部分,所有比它大的记录放置在后一部分,并把该记录排在这两部分的中间(称为该记录归位),这个过程称作一趟快速排序。

     2、算法复杂度  

      最好的情况下:因为每次都将序列分为两个部分(一般二分都复杂度都和logN相关),故为 O(N*logN)  

      最坏的情况下:基本有序时,退化为冒泡排序,几乎要比较N*N次,故为O(N*N)

      3、稳定性  

      由于每次都需要和中轴元素交换,因此原来的顺序就可能被打乱。如序列为 5 3 3 4 3 8 9 10 11会将3的顺序打乱。所以说,快速排序是不稳定的!

五、直接选择排序(选择排序)

      1、思想:首先在未排序序列中找到最小元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小元素,然后放到排序序列末尾。以此类推,直到所有元素均排序完毕。具体做法是:选择最小的元素与未排序部分的首部交换,使得序列的前面为有序。  

      2、时间复杂度。 

      最好情况下:交换0次,但是每次都要找到最小的元素,因此大约必须遍历N*N次,因此为O(N*N)。减少了交换次数! 

      最坏情况下,平均情况下:O(N*N)

      3、稳定性 

      由于每次都是选取未排序序列A中的最小元素x与A中的第一个元素交换,因此跨距离了,很可能破坏了元素间的相对位置,因此选择排序是不稳定的!

六、堆排序

     1、思想:利用完全二叉树中双亲节点和孩子节点之间的内在关系,在当前无序区中选择关键字最大(或者最小)的记录。也就是说,以最小堆为例,根节点为最小元素,较大的节点偏向于分布在堆底附近。 

      2、算法复杂度 

   &n

分享到:QQ空间新浪微博腾讯微博微信百度贴吧QQ好友复制网址打印

您可能想查找下面的文章:

  • c++ 快速排序算法【过程图解】
  • C++算法之在无序数组中选择第k小个数的实现方法
  • C C++ 算法实例大全
  • c++中八大排序算法
  • 详细总结C++的排序算法
  • 简单掌握桶排序算法及C++版的代码实现
  • C++三色球问题描述与算法分析
  • C++德州扑克的核心规则算法
  • C++中十种内部排序算法的比较分析
  • C++实现N个骰子的点数算法

相关文章

  • 2017-05-28用C语言实现单链表的各种操作(二)
  • 2017-05-28详解C语言的exp()函数和ldexp()函数以及frexp()函数
  • 2017-05-28浅谈C语言的字节对齐 #pragma pack(n)2
  • 2017-05-28C++封装线程类的实现方法
  • 2017-05-28c++中strcpy函数在VS2015无法使用的问题
  • 2017-05-28使用WindowsAPI实现播放PCM音频的方法
  • 2017-05-28浅谈c语言中转义字符的用法及注意事项
  • 2017-05-28探讨:用两个栈实现一个队列(我作为面试官的小结)
  • 2017-05-28数据结构之AVL树详解
  • 2017-05-28C++实现哈夫曼树简单创建与遍历的方法

文章分类

  • JavaScript
  • ASP.NET
  • PHP
  • 正则表达式
  • AJAX
  • JSP
  • ASP
  • Flex
  • XML
  • 编程技巧
  • Android
  • swift
  • C#教程
  • vb
  • vb.net
  • C语言
  • Java
  • Delphi
  • 易语言
  • vc/mfc
  • 嵌入式开发
  • 游戏开发
  • ios
  • 编程问答
  • 汇编语言
  • 微信小程序
  • 数据结构
  • OpenGL
  • 架构设计
  • qt
  • 微信公众号

最近更新的内容

    • 用typedef定义类型详细总结
    • MFC命名规则汇总
    • 利用c语言实现卷积码编码器示例
    • C++实现一维向量旋转算法
    • C语言编程中生成随机数的入门教程
    • 详解C++中的指针、数组指针与函数指针
    • C++类成员构造函数和析构函数顺序示例详细讲解
    • 用C语言的泛型实现交换两个变量值
    • 用C语言模仿Python函数的实例
    • C++简单输出钻石菱形图效果

关于我们 - 联系我们 - 免责声明 - 网站地图

©2020-2025 All Rights Reserved. linkedu.com 版权所有