• linkedu视频
  • 平面设计
  • 电脑入门
  • 操作系统
  • 办公应用
  • 电脑硬件
  • 动画设计
  • 3D设计
  • 网页设计
  • CAD设计
  • 影音处理
  • 数据库
  • 程序设计
  • 认证考试
  • 信息管理
  • 信息安全
菜单
linkedu.com
  • 网页制作
  • 数据库
  • 程序设计
  • 操作系统
  • CMS教程
  • 游戏攻略
  • 脚本语言
  • 平面设计
  • 软件教程
  • 网络安全
  • 电脑知识
  • 服务器
  • 视频教程
  • JavaScript
  • ASP.NET
  • PHP
  • 正则表达式
  • AJAX
  • JSP
  • ASP
  • Flex
  • XML
  • 编程技巧
  • Android
  • swift
  • C#教程
  • vb
  • vb.net
  • C语言
  • Java
  • Delphi
  • 易语言
  • vc/mfc
  • 嵌入式开发
  • 游戏开发
  • ios
  • 编程问答
  • 汇编语言
  • 微信小程序
  • 数据结构
  • OpenGL
  • 架构设计
  • qt
  • 微信公众号
您的位置:首页 > 程序设计 >C语言 > 深入剖析C++中的struct结构体字节对齐

深入剖析C++中的struct结构体字节对齐

作者:drybeans 字体:[增加 减小] 来源:互联网 时间:2017-05-28

drybeans 通过本文主要向大家介绍了c++struct,c++ struct用法,c++中struct,c++ typedef struct,c++ struct初始化等相关知识,希望对您有所帮助,也希望大家支持linkedu.com www.linkedu.com

什么是字节对齐,为什么要对齐?

现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定类型变量的时候经常在特 定的内存地址访问,这就需要各种类型数据按照一定的规则在空间上排列,而不是顺序的一个接一个的排放,这就是对齐。

对齐的作用和原因:各个硬件平台对存储空间的处理上有很大的不同。一些平台对某些特定类型的数据只能从某些特定地址开始存取。比如有些架构的CPU在访问一个没有进行对齐的变量的时候会发生错误,那么在这种架构下编程必须保证字节对齐.其他平台可能没有这种情况,但是最常见的是如果不按照适合其平台要求对数据存放进行对齐,会在存取效率上带来损失。比如有些平台每次读都是从偶地址开始,如果一个int型(假设为32位系统)如果存放在偶地址开始的地方,那么一个读周期就可以读出这32bit,而如果存放在奇地址开始的地方,就需要2个读周期,并对两次读出的结果的高低字节进行拼凑才能得到该32bit数据。显然在读取效率上下降很多。

结构的存储分配
编译器按照结构体成员列表的顺序为每个成员分配内存,当存储成员时需要满足正确地边界对齐要求时,成员之间可能出现用于填充地额外内存空间。32位系统每次分配字节数最多为4个字节,64位系统分配字节数最多为8个字节。
以下图表是在不同系统中基本类型数据内存大小和默认对齐模数:
注:此外指针所占内存的长度由系统决定,在32位系统下为32位(即4个字节),64位系统下则为64位(即8个字节).

2016518170752299.png (675×267)

没有#pragma pack宏的对齐
对齐规则:

结构体的起始存储位置必须是能够被该结构体中最大的数据类型所整除。
每个数据成员存储的起始位置是自身大小的整数倍(比如int在32位机为4字节,则int型成员要从4的整数倍地址开始存储)。
结构体总大小(也就是sizeof的结果),必须是该结构体成员中最大的对齐模数的整数倍。若不满足,会根据需要自动填充空缺的字节。
结构体包含另一个结构体成员,则被包含的结构体成员要从其原始结构体内部最大对齐模数的整数倍地址开始存储。(比如struct a里存有struct b,b里有char,int,double等元素,那b应该从8的整数倍开始存储。)
结构体包含数组成员,比如char a[3],它的对齐方式和分别写3个char是一样的,也就是说它还是按一个字节对齐。如果写:typedef char Array[3],Array这种类型的对齐方式还是按一个字节对齐,而不是按它的长度3对齐。
结构体包含共用体成员,则该共用体成员要从其原始共用体内部最大对齐模数的整数倍地址开始存储。
现在给出一个结构体,我们针对win-32和Linux-32进行分析,

例1:

struct MyStruct
{
  char a;
  int b;
  long double c;
};
</div>

解答:
win-32位系统下:
由上图可知该结构体的最大对齐模数为sizeof(long double)=8;假设MyStruct从地址空间0x0000开始存放。char为1个字节,所以a存放于0x0000中;int为4个字节,根据规则,b存储的起始地址必须为其对齐模数4的整数倍,所以a后面自动填充空缺字节空间0x0001-0x0003,因此b存放于0x0004-0x0007中。long double是8个字节,由于32位系统每次最多分配4个字节,则首先分配0x0008-0x000B,由于不够存储空间,则继续分配0x000C-0x000F,所以c存储在0x0008-0x000F中,由于此时总存储空间为4+4+8=16;则16满足最大对齐模数sizeof(long double)=8的整数倍;因此,sizeof(MyStruct)=16个字节。
Linux-32位系统下:

由上图可知该结构体的最大对齐模数为4;假设MyStruct从地址空间0x0000开始存放。char为1个字节,所以a存放于0x0000中;int为4个字节,根据规则,b存储的起始地址必须为其对齐模数4的整数倍,所以a后面自动填充空缺字节空间0x0001-0x0003,因此b存放于0x0004-0x0007中。long double是12个字节,由于32位系统每次最多分配4个字节,则首先分配0x0008-0x000B,由于不够存储空间,则继续分配0x000C-0x000F,仍然不满足存储c,则继续分配0x0010-0x0013,所以c存储在0x0008-0x0013中,由于此时总存储空间为4+4+12=20;则20满足最大对齐模数4的整数倍;因此,sizeof(MyStruct)=20个字节。

注:以下的所有例子都是在win-32下实现
例2:

struct B{ 
  char a; 
  int b; 
  char c; 
};
</div>

由上图可知该结构体的最大对齐模数为sizeof(int)=4;假设B从地址空间0x0000开始存放。char为1个字节,所以a存放于0x0000中;int为4个字节,根据规则,b存储的起始地址必须为其对齐模数4的整数倍,所以a后面自动填充空缺字节空间0x0001-0x0003,因此b存放于0x0004-0x0007中。c也是char类型,所以c存放在0x0008中;此时结构体B总的大小为4+4+1=9个字节;则9不能满足最大对齐模数4的整数倍;因此在c的后面自动填充空间0x0009-0x000B,使其满足最大对齐模数的倍数,最终结构体B的存储空间为0x0000-0x000B;则sizeof(B)=12个字节。
例3:空结构体

struct C{ 
  };
sizeof(C) = 0或sizeof(C);
</div>

C为空结构体,在C语言中占0字节,在C++中占1字节。

例4:结构体有静态成员

struct D{ 
   char a; 
   int b; 
   static double c; //静态成员 
};
</div>

静态成员变量存放在全局数据区内,在编译的时候已经分配好内存空间,所以对结构体的总内存大小不做任何贡献;因此,sizeof(D)=4+4=8个字节
例5:结构体中包含结构体

struct E{ 
  int a; 
  double b; 
  float c; 
}; 
struct F{ 
  char e[2]; 
  int f; 
  short h; 
  struct E i; 
};
</div>

在结构体E中最大对齐模数是sizeof(double)=8;且sizeof(E)=8+8+8=24个字节;在结构体F中,除了结构体成员E之外,其他的最大对齐模数是sizeof(int)=4;又因为结构体E中最大对齐模数是sizeof(double)=8;所以结构体F的最大对齐模数取E的最大对齐模数8;因此,sizeof(F)=4+4+8+24=40个字节。
例6:结构体包含共用体

union union1 
{ 
  long a; 
  double b; 
  char name[9]; 
  int c[2]; 
}; 
struct E{ 
  int a; 
  double b; 
  float c; 
  union1 MyUnion; 
};
</div>

共用体中的最大对齐模式是sizeof(double)=8;则sizeof(union1)=16;结构体E的最大对齐模数也是8;则sizeof(E)=8+8+8+16=40个字节。
例7:结构体包含指针成员

typedef struct A{ 
  char a; 
  int b; 
  float c; 
  double d; 
  int *p; 
  char *pc; 
  short e; 
}A;
</div>

结构体包含的指针成员的大小根据系统类型决定,由于这里是在win-32位系统下分析,则指针大小为4个字节;因此,结构体A的最大对齐模数为sizeof(double)=8;则sizeof(A)=4+4+8+8+4+4+8=40个字节。

存在#pragma pack宏的对齐

#pragma pack (n)  //编译器将按照n个字节对齐 
#pragma pack ()   //取消自定义字节对齐方式
</div>

对齐规则:
结构,联合,或者类的数据成员,第一个放在偏移为0的地方,以后每个数据成员的对齐,按照#pragma pack指定的数值和自身对齐模数中较小的那个。
例8:按指定的对齐模数

#pragma pack (2) /*指定按2字节对齐*/ 
struct G{ 
  char b; 
  int a; 
  double d; 
  short c; 
}; 
#pragma pack () /*取消指定对齐,恢复缺省对齐*/
</div>

在结构体G中成员变量的最大对齐模数是sizeof(double)=8;又因为指定对齐模数是2;所以取其较小者2为结构体G的最大对齐模数;则sizeof(G)=2+4+8+2=16;由于16是2的整数倍,则不需要填充。

总结
在分析结构体字节对齐时,首先确定有没有利用#pragma pack()宏定义指定对齐模数;根据情况对应上面进行两种情况分析,针对不同的系统会得到不同的结果。

补充:
在Visual C++下可以用__declspec(align(#))声明数据按#字节对齐
GUN C下可以使用以下命令:
__attribute__((aligned (n))),让所作用的结构成员对齐在n字节自然边界上。如果结构中有成员的长度大于n,则按照最大成员的长度来对齐
__attribute__((__packed__)),取消结构在编译过程中的优化对齐,按照实际占用字节数进行对齐。
C++11新加关键字alignas(n)

</div>
分享到:QQ空间新浪微博腾讯微博微信百度贴吧QQ好友复制网址打印

您可能想查找下面的文章:

  • C++使struct对象拥有可变大小的数组(详解)
  • 详解C++程序中定义struct结构体的方法
  • 深入剖析C++中的struct结构体字节对齐
  • C++中声明类的class与声明结构体的struct关键字详解
  • c++中struct使用注意事项
  • C++中关键字Struct和Class的区别
  • 浅析c与c++中struct的区别
  • 深入C++中struct与class的区别分析

相关文章

  • 2017-05-28用C语言判断一个二叉树是否为另一个的子结构
  • 2017-05-28linux下C语言中的mkdir函数与rmdir函数
  • 2017-05-28Linux下控制(统计)文件的生成的C代码实现
  • 2017-05-28C语言中 “_at()” 特殊地址定位详解
  • 2017-05-28C++数据结构之实现循环顺序队列
  • 2017-05-28c#中实现退出程序后自动重新启动程序的方法
  • 2017-05-28VC多线程编程详解
  • 2017-05-28C++中复制构造函数和重载赋值操作符总结
  • 2017-05-28深入理解C++的动态绑定与静态绑定的应用详解
  • 2017-05-28C 语言基础教程(我的C之旅开始了)[十]

文章分类

  • JavaScript
  • ASP.NET
  • PHP
  • 正则表达式
  • AJAX
  • JSP
  • ASP
  • Flex
  • XML
  • 编程技巧
  • Android
  • swift
  • C#教程
  • vb
  • vb.net
  • C语言
  • Java
  • Delphi
  • 易语言
  • vc/mfc
  • 嵌入式开发
  • 游戏开发
  • ios
  • 编程问答
  • 汇编语言
  • 微信小程序
  • 数据结构
  • OpenGL
  • 架构设计
  • qt
  • 微信公众号

最近更新的内容

    • 浅析C++11新特性的Lambda表达式
    • C和MFC巧妙获取外网IP的两种实现方法
    • c++ minicsv库的编译错误与解决方案
    • 深入讲解C++数据类型转换的相关函数的知识
    • C/C++动态分配与释放内存的区别详细解析
    • C++编程中逗号运算符和条件运算符的使用方法讲解
    • C++抽奖程序实现方法
    • 深入全排列算法及其实现方法
    • 关于C/C++中static关键字的作用总结
    • 详解C++设计模式编程中建造者模式的实现

关于我们 - 联系我们 - 免责声明 - 网站地图

©2020-2025 All Rights Reserved. linkedu.com 版权所有