前言
在实际开发时,你有没有碰到过这种问题;开发一个类,封装了一个对象的核心操作,而这些操作就是客户使用该类时都会去调用的操作;而有一些非核心的操作,可能会使用,也可能不会使用;现在该怎么办呢?
1.将这些非核心的操作全部放到类中,这样,一个类就包含了很多核心的操作和一些看似有关,但是又无关的操作;这就会使核心类发生“爆炸”的现象,从而使核心类失去了一定的价值,也使使用核心类的客户在核心操作和非核心操作中挣扎;
2.使用继承来扩展核心类,需要使用核心类时,直接建立核心类对象;当需要使用核心类扩展类时,就建立核心类扩展类对象;这样貌似是一种很有效的方法;但是由于继承为类型引入的静态特质,使得这种扩展方式缺乏灵活性;同时,又掉入了另一个陷阱,随着扩展功能的增多,子类也会增多,各种子类的组合,就会导致类的膨胀,最后,就会被淹没在类的海洋;此时,也不用我多说,你是不是想起了桥接模式,桥接模式就是为了适应多个维度的变化而发生子类“爆炸”的情况,但是,桥接模式是为了适应抽象和实现的不同变化,并不适用于我这里说的。那如何是好,这就要说到今天总结的装饰模式了。
什么是装饰模式?
在GOF的《设计模式:可复用面向对象软件的基础》一书中对装饰模式是这样说的:动态地给一个对象添加一些额外的职责。就增加功能来说,Decorator模式相比生成子类更为灵活。
装饰模式能够实现动态的为对象添加功能,是从一个对象外部来给对象添加功能。通常给对象添加功能,要么直接修改对象添加相应的功能,要么派生对应的子类来扩展,抑或是使用对象组合的方式。显然,直接修改对应的类这种方式并不可取。在面向对象的设计中,而我们也应该尽量使用对象组合,而不是对象继承来扩展和复用功能。装饰器模式就是基于对象组合的方式,可以很灵活的给对象添加所需要的功能。装饰器模式的本质就是动态组合。动态是手段,组合才是目的。总之,装饰模式是通过把复杂的功能简单化,分散化,然后再运行期间,根据需要来动态组合的这样一个模式。它使得我们可以给某个对象而不是整个类添加一些功能。
UML类图
Component:定义一个对象接口,可以给这些对象动态地添加职责;
ConcreteComponent:定义一个具体的Component,继承自ConcreateComponent,重写了Component类的虚函数;
Decorator:维持一个指向Component对象的指针,该指针指向需要被装饰的对象;并定义一个与Component接口一致的接口;
ConcreteDecorator:向组件添加职责。
代码实现:
/*
** FileName : DecoratorPatternDemo
** Author : Jelly Young
** Date : 2013/12/19
** Description : More information, please go to http://www.weikejianghu.com
*/
#include <iostream>
using namespace std;
class Component
{
public:
virtual void Operation() = 0;
};
class ConcreteComponent : public Component
{
public:
void Operation()
{
cout<<"I am no decoratored ConcreteComponent"<<endl;
}
};
class Decorator : public Component
{
public:
Decorator(Component *pComponent) : m_pComponentObj(pComponent) {}
void Operation()
{
if (m_pComponentObj != NULL)
{
m_pComponentObj->Operation();
}
}
protected:
Component *m_pComponentObj;
};
class ConcreteDecoratorA : public Decorator
{
public:
ConcreteDecoratorA(Component *pDecorator) : Decorator(pDecorator){}
void Operation()
{
AddedBehavior();
Decorator::Operation();
}
void AddedBehavior()
{
cout<<"This is added behavior A."<<endl;
}
};
class ConcreteDecoratorB : public Decorator
{
public:
ConcreteDecoratorB(Component *pDecorator) : Decorator(pDecorator){}
void Operation()
{
AddedBehavior();
Decorator::Operation();
}
void AddedBehavior()
{
cout<<"This is added behavior B."<<endl;
}
};
int main()
{
Component *pComponentObj = new ConcreteComponent();
Decorator *pDecoratorAOjb = new ConcreteDecoratorA(pComponentObj);
pDecoratorAOjb->Operation();
cout<<"============================================="<<endl;
Decorator *pDecoratorBOjb = new ConcreteDecoratorB(pComponentObj);
pDecoratorBOjb->Operation();
cout<<"============================================="<<endl;
Decorator *pDecoratorBAOjb = new ConcreteDecoratorB(pDecoratorAOjb);
pDecoratorBAOjb->Operation();
cout<<"============================================="<<endl;
delete pDecoratorBAOjb;
pDecoratorBAOjb = NULL;
delete pDecoratorBOjb;
pDecoratorBOjb = NULL;
delete pDecoratorAOjb;
pDecoratorAOjb = NULL;
delete pComponentObj;
pComponentObj = NULL;
}
</div>
使用场合
1.在不影响其他对象的情况下,以动态的,透明的方式给单个对象添加职责;
2.处理那些可以撤销的职责;
3.当不能采用生成子类的方法进行扩充时。一种情况是,可能存在大量独立的扩展,为支持每一种组合将产生大量的子类,使得子类数目呈爆炸性增长。另一种情况可能是因为类定义被隐藏,或类定义不能用于生成子类。
注意事项
1.接口的一致性;装饰对象的接口必须与它所装饰的Component的接口是一致的,因此,所有的ConcreteDecorator类必须有一个公共的父类;这样对于用户来说,就是统一的接口;
2.省略抽象的Decorator类;当仅需要添加一个职责时,没有必要定义抽象Decorator类。因为我们常常要处理,现存的类层次结构而不是设计一个新系统,这时可以把Decorator向Component转发请求的职责合并到ConcreteDecorator中;
3.保持Component类的简单性;为了保证接口的一致性,组件和装饰必须要有一个公共的Component类,所以保持这个Component类的简单性是非常重要的,所以,这个Component类应该集中于定义接口而不是存储数据。对数据表示的定义应延迟到子类中,否则Component类会变得过于复杂和臃肿,因而难以大量使用。赋予Component类太多的功能,也使得具体的子类有一些它们它们不需要的功能大大增大;
实现要点
1