• linkedu视频
  • 平面设计
  • 电脑入门
  • 操作系统
  • 办公应用
  • 电脑硬件
  • 动画设计
  • 3D设计
  • 网页设计
  • CAD设计
  • 影音处理
  • 数据库
  • 程序设计
  • 认证考试
  • 信息管理
  • 信息安全
菜单
linkedu.com
  • 网页制作
  • 数据库
  • 程序设计
  • 操作系统
  • CMS教程
  • 游戏攻略
  • 脚本语言
  • 平面设计
  • 软件教程
  • 网络安全
  • 电脑知识
  • 服务器
  • 视频教程
  • JavaScript
  • ASP.NET
  • PHP
  • 正则表达式
  • AJAX
  • JSP
  • ASP
  • Flex
  • XML
  • 编程技巧
  • Android
  • swift
  • C#教程
  • vb
  • vb.net
  • C语言
  • Java
  • Delphi
  • 易语言
  • vc/mfc
  • 嵌入式开发
  • 游戏开发
  • ios
  • 编程问答
  • 汇编语言
  • 微信小程序
  • 数据结构
  • OpenGL
  • 架构设计
  • qt
  • 微信公众号
您的位置:首页 > 程序设计 >C语言 > 深入理解堆排序及其分析

深入理解堆排序及其分析

作者: 字体:[增加 减小] 来源:互联网 时间:2017-05-28

通过本文主要向大家介绍了java堆排序算法,堆排序,堆排序算法,堆排序建堆过程图示,堆排序原理等相关知识,希望对您有所帮助,也希望大家支持linkedu.com www.linkedu.com

记得在学习数据结构的时候一味的想用代码实现算法,重视的是写出来的代码有一个正确的输入,然后有一个正确的输出,那么就很满足了。从网上看了许多的代码,看了之后貌似懂了,自己写完之后也正确了,但是不久之后就忘了,因为大脑在回忆的时候,只依稀记得代码中的部分,那么的模糊,根本不能再次写出正确的代码,也许在第一次写的时候是因为参考了别人的代码,看过之后大脑可以进行短暂的高清晰记忆,于是欺骗了我,以为自己写出来的,满足了成就感。可是代码是计算机识别的,而我们更喜欢文字,图像。所以我们在学习算法的时候要注重算法的原理以及算法的分析,用文字,图像表达出来,然后当需要用的时候再将文字转换为代码。记忆分为三个步骤:编码,存储和检索,就以学习为例,先理解知识,再归纳知识,最后巩固知识,为了以后的应用而方便检索知识。

堆排序过程
堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] >= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。

既然是堆排序,自然需要先建立一个堆,而建堆的核心内容是调整堆,使二叉树满足堆的定义(每个节点的值都不大于其父节点的值)。调堆的过程应该从最后一个非叶子节点开始,假设有数组A = {1, 3, 4, 5, 7, 2, 6, 8, 0}。那么调堆的过程如下图,数组下标从0开始,A[3] = 5开始。分别与左孩子和右孩子比较大小,如果A[3]最大,则不用调整,否则和孩子中的值最大的一个交换位置,在图1中是A[7] > A[3] > A[8],所以A[3]与A[7]对换,从图1.1转到图1.2。

image

所以建堆的过程就是

        do AdjustHeap(A, heapLen, i)
</div>
建堆完成之后,堆如图1.7是个大根堆。将A[0] = 8 与 A[heapLen-1]交换,然后heapLen减一,如图2.1,然后AdjustHeap(A, heapLen-1, 0),如图2.2。如此交换堆的第一个元
素和堆的最后一个元素,然后堆的大小heapLen减一,对堆的大小为heapLen的堆进行调堆,如此循环,直到heapLen == 1时停止,最后得出结果如图3。

image

image

image

因此,建堆的运行时间是O(n)。
•循环调堆(代码67-74),因为需要调堆的是堆顶元素,所以运行时间是O(h) = O(floor(logn))。所以循环调堆的运行时间为O(nlogn)。
总运行时间T(n) = O(nlogn) + O(n) = O(nlogn)。对于堆排序的最好情况与最坏情况的运行时间,因为最坏与最好的输入都只是影响建堆的运行时间O(1)或者O(n),而在总体时间中占重要比例的是循环调堆的过程,即O(nlogn) + O(1) =O(nlogn) + O(n) = O(nlogn)。因此最好或者最坏情况下,堆排序的运行时间都是O(nlogn)。而且堆排序还

分享到:QQ空间新浪微博腾讯微博微信百度贴吧QQ好友复制网址打印

您可能想查找下面的文章:

  • 解读堆排序算法及用C++实现基于最大堆的堆排序示例
  • 堆排序算法(选择排序改进)
  • 深入理解堆排序及其分析

相关文章

  • 2017-05-28基于WTL中使用双缓冲避免闪烁的解决方法
  • 2017-05-28C语言之栈和堆(Stack && Heap)的优缺点及其使用区别
  • 2017-05-28C++中静态存储区与栈以及堆的区别详解
  • 2017-05-28C++二分法在数组中查找关键字的方法
  • 2017-05-28C++大数模板(推荐)
  • 2017-05-28探讨C语言中关键字volatile的含义
  • 2017-05-28C++动态规划之最长公子序列实例
  • 2017-05-28用C++实现一个链式栈的实例代码
  • 2017-05-28c病毒程序原理分析(防范病毒 c语言小病毒示例)
  • 2017-05-28深入理解C/C++中的写时拷贝

文章分类

  • JavaScript
  • ASP.NET
  • PHP
  • 正则表达式
  • AJAX
  • JSP
  • ASP
  • Flex
  • XML
  • 编程技巧
  • Android
  • swift
  • C#教程
  • vb
  • vb.net
  • C语言
  • Java
  • Delphi
  • 易语言
  • vc/mfc
  • 嵌入式开发
  • 游戏开发
  • ios
  • 编程问答
  • 汇编语言
  • 微信小程序
  • 数据结构
  • OpenGL
  • 架构设计
  • qt
  • 微信公众号

最近更新的内容

    • C++实现邮件群发的方法
    • C/C++字符串函数之复制函数详解
    • 使用C语言求解扑克牌的顺子及n个骰子的点数问题
    • 深入二叉树两个结点的最低共同父结点的详解
    • 循环队列详解及队列的顺序表示和实现
    • MFC程序执行过程深入剖析
    • 内核线程优先级设置的方法介绍
    • C++ boost 时间与日期处理详细介绍
    • C++中判断成员函数是否重写
    • C语言指针是什么?1分钟彻底理解C语言指针的概念

关于我们 - 联系我们 - 免责声明 - 网站地图

©2020-2025 All Rights Reserved. linkedu.com 版权所有